1 Introduction

1.1 How should differences in movement arise

We've been talking about a model of movement like (1), involving feature valuation (Agree) and an application of Merge:

(1)

If (1) is the syntax of all phrasal movement, we can distinguish at least three conceivable approaches to differences between movement types:

1. A positional approach:
 Differences between movement types reflect properties of the head H.

2. A featural approach:
 Differences between movement types reflect properties of the feature F involved in Agree.

3. A categorial approach:
 Differences between movement types reflect properties of the phrase XP.

1.2 The classic view: A- and Ā-positions

Much work since Chomsky (1981) assumes that the solution to the A/Ā-distinction is to recognize a difference between A- and Ā-positions. This has clear motivation in languages like English:

- Passivization and raising both target Spec-TP
- Topicalization, relativization, and wh-movement all seem to target Spec-CP

Key conjecture of a positional approach: The differences between A- and Ā-movement reflect the differing properties of these positions.

1.3 Problems with A- and Ā-positions

- There is still no clear basis for classifying a position as A or Ā. Some well-known attempts:
 - Potential thematic positions vs. non-thematic positions (e.g. Chomsky 1981)
 - Adjunction vs. substitution (e.g. Stowell 1981; Mahajan 1990)
 - Phase edge vs. not on the phase edge (e.g. Chomsky 2008)

Why do these proposals not work?

- In addition, it is not obvious why Merge should yield distinct types of syntactic positions.
- Finally, still not very clear how different A/Ā-properties should be linked to positions (e.g. locality, binding, pied-piping).¹

Why might we worry about a categorial approach to the A/Ā-distinction?

¹A possible exception might be Williams’s (2003) proposal for how to derive the ban on A-movement from a finite clause.
2 A featural approach to the A/Ā-distinction

2.1 Features and diversity in movement

▷ The null hypothesis, in a minimalist approach, should be that all features are capable of initiating Merge.

▷ If all movement is feature-driven, this might give us a natural way in to the problem of diversity in movement.

(2) Conjecture (Van Urk 2015):
The diversity of movement types corresponds to a taxonomy of features in narrow syntax.

In this class, I will defend this for the A/Ā-distinction, as a proof of concept:

(3) A featural approach to the A/Ā-distinction (Van Urk 2015):
All differences between A- and Ā-movement derive from independent properties of the features involved in Agree.

2.2 The A/Ā-distinction without A/Ā-positions

What does a featural approach to the A/Ā-distinction look like?

My main proposal is that the A/Ā-distinction reflects a difference between two logically possible types of features:

1. **Obligatory** features of the moving phrase XP, specifically obligatory features of nominals, like ϕ-features and Case

2. **Optional** Ā-features of the moving phrase XP. including Wh, Top, Rel, Foc (Rizzi 1990; Abels 2012)

Why does optionality matter?

▷ Obligatory features are always going to be categorically restricted, but optional features do not need to be\(^2\)

▷ Movement driven by obligatory features must be more bounded, since they are not omissible on intervening items (this is the logic of Rizzi’s Relativized Minimality)

\(^2\)This raises the question of whether we expect there to be obligatory features of other projections that drive A-movement-like processes. I’ll return to this.

▷ If pied-piping arises because of the involvement of the presence of an optional QP layer, as in Cable (2007), then pied-piping should not be possible with obligatory features

In addition, I will propose a **semantic difference** between A- and Ā-movement:

▷ Following Sauerland (1998) and Ruys (2000), I propose that Ā-movement involves abstraction over choice functions and A-movement abstraction over **individuals**.

▷ This will be responsible for differences in Weak Crossover and licensing of parasitic gaps and depictives.

3 Optional and obligatory features

The core of my proposal is that the A/Ā-distinction reflects a distinction between **two types of features**:

1. **obligatory** features of nominals, like ϕ-features or Case (4)

2. a class of **optional** Ā-features including Wh, Top, Rel (Rizzi 1990; Abels 2012), introduced by an additional Q layer (5) (Cable 2007)

(4) A-moving DP:

\[
\begin{array}{c}
\text{DP} \\
D \quad \text{NP} \\
[ϕ]
\end{array}
\]

(5) Ā-moving DP:

\[
\begin{array}{c}
\text{QP} \\
Q \quad \text{DP} \\
[A] \quad \text{NP} \\
[ϕ]
\end{array}
\]

3.1 Relativized Minimality and Attract Closest

The idea that optionality/obligatoriness is responsible for differences in locality has a long tradition, particularly clearly in Rizzi’s (1990) **Relativized Minimality**:

(6) Relativized Minimality:
A syntactic relation R must involve the closest XP capable of entering into R. (Rizzi 1990 et seq; see also Starke 2001)
In minimalist terms, this is usually rephrased as a condition on Agree:

\[\text{Attract Closest:} \]
A probing feature \(F \) must attract the closest element that bears \(F \).

\[\Rightarrow \text{Relativized Minimality/Attract Closest provides a featural explanation of the long-distance nature of \(\bar{A} \)-movement.} \]

3.2 The locality of \(\bar{A} \)-movement

\(\bar{A} \)-movement can cross/escape clauses and DPs. This follows from the idea that \(\bar{A} \)-features are optional features of phrases. Optionality means that an intervening DP or CP that lacks an \(\bar{A} \)-feature, Attract Closest will ignore it:

\[\text{(8)} \]

In line with Attract Closest, \(\bar{A} \)-movement can’t cross/escape a DP or CP if it is also interrogative (e.g. Ross 1967; Kuno and Robinson 1972):\(^3\)

\[\text{(9) } \bar{A} \text{-movement can’t cross other } \bar{A} \text{-features:} \]
\[\begin{align*}
\text{a. } \ast \text{Who did who say [that Alex thinks [that Sam likes ___]]?} \\
\text{b. } \ast \ast \text{Who did Kim ask [whether Sam likes ___]?}
\end{align*} \]

\[\text{3There is an extensive literature on apparent exceptions (e.g. Bolinger 1978; Pesetsky 1987), but I’ll assume this to be generally the right characterization. As we saw with } \bar{A} \text{-movement, there are exceptions to intervention in a number of places.} \]

3.3 Locality of A-movement

Relativized Minimality explains the more bounded nature of A-movement. If A-movement is driven by obligatory features, then such features cannot be absent on intervening DPs (10).

\[\text{(10)} \]

The locality difference then just results from independent properties of the distribution of the probing features.

4 A-movement and finite CPs

In English and many other languages, A-movement can escape a non-finite clause (11a), but not a finite one (11b), unlike \(\bar{A} \)-movement (11c).

\[\text{(11) A-movement cannot cross finite CP:} \]
\[\begin{align*}
\text{a. She seems [TP ___ to be smart]} \\
\text{b. } \ast \text{She seems [CP ___ is certain to be smart].} \\
\text{c. Who does it seem [CP ___ is certain to be smart]?}
\end{align*} \]

How does this fit into a Relativized Minimality approach?

Halpert (2012, 2015): CPs are potential targets for A-movement. As a result, the ban on A-movement out of a finite CP is a case of intervention, based on dominance.
The pattern in (11a–c) is not universal. In Zulu, for example, raising out a finite clause is permitted (12a), but raising out of a non-finite clause is blocked (12b).

(12) Zulu raising can only cross finite CP:
 a. iqhina li-bonakala [CP ukuthi __ i-zo-phuma embizeni].
 5steinbok 5s-seem that 5s-FUT-exit 3cooking.pot
 ‘It seems that the secret will come out.’
 (lit. ‘It seems that the steinbok will leave the cooking pot.’)
 b. *iqhina li-bonakala [__ uku-phuma embizeni].
 5steinbok 5s-seem inf-exit 3cooking.pot
 ‘It seems that the secret will come out.’ (Halpert 2015:6)

Can we predict when a clause will permit raising?

4.1 Agreement and infinitival clauses in Zulu

Halpert (2015): Infinitival clauses and finite clauses in Zulu show different interactions with \(\phi \)-agreement, in a way that is predictive of raising.

As in many Bantu languages, Zulu has obligatory agreement in noun class with the nominal in Spec-TP (13a). When there is nothing in Spec-TP, we get default agreement (13b):

(13) Noun class agreement in Zulu:
 a. omakhelwane ba/*ku-xova ujeqe.
 2neighbor 2s/17s-make 1steamed.bread
 ‘Zinhle is making steamed bread.’
 b. ku-xova omakhelwane ujeqe.
 17s-make 2neighbor steamed.bread
 ‘The neighbors are making steamed bread.’ (Halpert 2015:11)

Infinitival clauses in Zulu are marked by the prefix uku-, which forms nominals of class 15:

(14) Infinitives are nominals of class 15:
 a. ngi-funa [uku-xova ujeqe].
 1sg-want 15-make steamed.bread
 ‘I want to make steamed bread.’ (Halpert 2015:12)

Infinitival clauses trigger subject and object agreement just like nominals:

(15) Infinitival clauses trigger subject/object agreement:
 a. [uku-xova ujeqe] ku-mnandi.
 15-make 1steamed.bread 15s-nice
 ‘Making steamed bread is nice.’
 b. ngi-ya-ku-funa [uku-xova ujeqe].
 1sg-YA-15o-want 15-make steamed.bread
 ‘I want to make steamed bread.’ (Halpert 2015:12–13)

In addition, infinitival clauses can appear as the subjects of raising predicates:

(16) Infinitival clauses appear in Spec-TP:
 inf-arrive 15ASSOC-14winter 15s-YA-seem
 ‘Winter’s arrival is evident.’ (Halpert 2015:20)

Halpert (2015): This is intervention. The infinitival clause bears \(\phi \)-features and can undergo A-movement, hence is a closer goal.

4.2 Agreement and finite CPs in Zulu

Like non-finite clauses, finite CPs are can be agreed with for noun class 15, but they are ungrammatical in agreeing subject position, and have to be embedded in a nominal:

(17) Finite CPs don’t appear in subject position:
 a. ngi-ya-ku-cabanga [CP ukuthi uMlungisi u-ya-bhukuda
 1sg.s-ya-17o-think that 1Mlungisi 1s-YA-swim
 manje].
 now
 ‘I think that Mlungisi is swimming now.’
 b. *[ukuthi w-a-thatha umhlala phansi] kw-a-angi-mangaza.
 that 1s-PST-take 1s-PST-15g.o-surprise
 ‘That he retired surprised me.’
 c. [DP indaba [CP y-okuthi w-a-thatha umhlala phansi]]
 9news 9ASSOC-that 1s-PST-take 1s-ASSOC-1s-surprise
 y-a-angi-mangaza.
 9s-PST-15g.s-surprise
 ‘The news that he retired surprised me.’ (Halpert 2015:14)

Halpert: Subjects can raise out of a finite CP precisely because the finite CP is not a good goal for A-movement!
The probe on T finds the CP target, but is allowed to “try again” after failing to attract the CP to Spec-TP, and target the next closest goal down:

(18)

\[\begin{array}{c}
\text{TP} \\
\text{DP} \ldots \\
T \quad [\varphi] \\
\cdots \quad \text{CP} \quad [\varphi] \\
\quad \text{C} \quad \text{TP} \\
\cdots \quad \text{DP} \quad [\varphi] \\
\end{array} \]

Agreement in hyper-raising reveals this derivational history, and can register the features of both goals (otherwise not possible in Zulu!):

(19) Agreement in hyper-raising register either DP or subject:

\[\begin{array}{c}
uZinhle \quad \text{ku-/u-bonakala} \quad [\text{CP} \quad \text{ukuthi} \quad \text{u-zo-xova} \quad \text{ujeqe}]. \\
uZinhle \quad 17s/1s-seem \quad \text{that} \quad 1s-fut-make \text{steamed.bread} \quad \text{‘It seems that Zinhle will make steamed bread.’} \quad (\text{Halpert 2015:9}) \end{array} \]

Languages in which the ban on hyper-raising applies are languages in which finite CPs are capable of satisfying the needs of T, either directly or with an expletive:

(20) Finite CPs in English satisfy Spec-TP:

a. \([\text{CP} \quad \text{That Jess is smart}]\) seems likely.

b. It seems likely \([\text{CP} \quad \text{that Jess is smart}]\).

4.3 Are CPs really nominal? (Claire’s class yesterday, p.c.)

If CPs are interveners for A-movement, they should have \(\varphi\)-features. But CPs traditionally denote propositions!

Moulton (2015): CPs can’t just denote propositions, because they can enter into equative constructions with DPs (see also Higgins 1973; Potts 2002):

(21) The idea/myth/story/rumor/fact is that Bob is a fraud.

“[L]iterally equating ideas and stories with propositions cannot be correct. Stories can be long and boring. But propositions can’t be. Rumors can be mean; they can be spread by people. But you can’t spread sets of possible worlds, nor can worlds be mean. Myths can be old and Greek; ideas can be new and exciting. None of these is something that a proposition can be. The CP in (17) does not denote a proposition.” (Moulton 2015:312)

Moulton: CPs are predicates over contentful individuals:

(22) \([\text{that Bob is a fraud}] = \lambda x_{c}. \lambda w. \text{cont}(x_{c})(w) = \lambda w’. \text{Bob is a fraud in } w’\) (where \(\text{cont}\) is a function that takes an entity and returns a set of possible worlds compatible with its content)

What (22) says is essentially that a CP like that Bob is a fraud describes entities whose content is that Bob is a fraud.

Proposal:

- If CPs are of the same type as NPs, they might share sufficient nominal structure to both have \(\varphi\)-features.

- If \(\varphi\)-features are functions from sets of individuals to sets of individuals, as in Harbour (2016), they can compose with (22).

- But that doesn’t mean that CPs must be fully nominal and can undergo A-movement. They lack a DP layer and are still not of type \(e\).
Whether CPs undergo proper A-movement will depend on whether languages allow them to appear with a DP shell or an expletive (or to transit through Spec-TP with Trace Conversion relations).\(^4\)

The locality of A- and Æ-movement can be derived from the optionality/obligatoriness of these features:

\(\triangleright\) \(\varphi\)-features are obligatory on DP and CP, and so A-movement out of and across these is restricted
\(\triangleright\) Æ-features are optional features of DP and CP, and so Æ-movement out of and across these may be unbounded

5 Restriction to nominals and pied-piping

5.1 Restriction to nominals

\(\triangleright\) We saw that A-movement is limited to nominals (and CPs, in the right conditions), while Æ-movement is not.

(23) **A-movement is limited to nominals:**
```
a. [[[DP The student] was spotted ___ in the library.
b. *[Adv] Clearly] seemed ___ [CP that it was raining].
c. *[PP Under the table] was slept.
```

The restriction to nominals follows if A-movement is triggered by obligatory features, since obligatory features should be limited to particular extended projections, in this case those of nouns:

(24)
```
   DP
    \(\varphi\)P
   D
    \(\varphi\)
   NP
```

\(\triangleright\) In contrast, optional features are, by definition, not going to be obligatorily selected for and so should in principle not be restricted to any particular location, as long as they can semantically compose.

5.2 Pied-piping

This view extends to pied-piping, if we use Cable’s (2007, 2010) proposal that pied-piping arises because Æ-phrases are embedded in a QP.

Cable (2007, 2010): In a number of languages, \(wh\)-phrases consist of two parts: a \(wh\)-phrase and a Q particle.

(25) **Wh-phrases may contain Q particle as well:**
```
a. Yá x’úx kawshixít aadóoch sá.
   this book he.wrote.it who.erg Q
   ‘People will read this book.’
   (Cable 2007:64)
b. Ranjit [CP kau da aawa kiyola] dann-e?
   Ranjit who Q came that know-Q
   ‘Who does Ranjit know came?’
   (Sinhala; Hagstrom 1998:6)
```

The Q particle doesn’t just accompany the \(wh\)-phrase. In a \(wh\)-fronting in Tlingit, the Q particle marks the **size of the pied-piped phrase**:

(26) **Q particle marks the size of the pied-piped phrase in Tlingit:**
```
a. [[Aadóо teen] sá] yigoot?
   who with Q you.went
   ‘Who did you go with?’
b. [[Aadóо yaagu] sá] yigoot?
   who boat Q you.saw
   ‘Whose boat did you see?’
   (Cable 2007; Tlingit)
```

\(\Rightarrow\) In Tlingit then, \(wh\)-movement is actually QP movement, where QP contains a \(wh\)-phrase within it:

(27)
```
   QP
    \(Q\)
   PP
    \(sá\)
   NP
    \(aadóо\)
   P
    \(teen\)
   who
    \(with\)
```

\(^4\)This view might also explains why CPs cannot be picked up by some pronouns (Iatridou and Embick 1997), if pronouns are usually of type \(e\). In accordance with this, Hartman (2012) shows that clausal subjects that occupy Spec-TP can be coreferential with pronouns.
What would (27) look like in a language like English?
If English also has a silent Q particle, it would mean that a pied-piping is example looks like:

(28) \([QP \; Q \; [PP \; \text{to which person}]] \) did you give the ball \(_?\)

⇒ If (28) is correct, then pied-piping effects are illusory! You’re always moving a QP, but Q is just silent. In this view, variability in pied-piping reflects the fact that Q can merge in different places:

(29) Pied-piping reflects variable merge of Q:
 a. \([QP \; Q \; [DP \; \text{which person}]] \) did you give the ball \([PP \; _]?\)
 b. \([QP \; Q \; [PP \; \text{to which person}]] \) did you give the ball \(_?\)

The absence of pied-piping with A-movement
On this view, \(\bar{A}\)-features are introduced on a Q head, which can merge with a variety of phrases:

(30)

\[
\begin{align*}
 &QP \\
 &Q \\
 &[\bar{A}] \\
 &\ldots \text{Wh/Top/Foc} \ldots
\end{align*}
\]

▷ \(\bar{A}\)-features are obligatory features of nominals and are selected for. They cannot freely Merge with different phrases, like Q. In this view, pied-piping requires flexibility of Merge site.

▷ The ability for Q to Merge at a distance from the \(\text{wh}\)-phrase has to do with its semantic ability to manipulate focus alternatives. Nothing like this goes on with \(\bar{A}\)-features.

6 Predictions of a featural approach
Focusing on a difference between features that should be independently attested, we have shown that we can account for: (i) locality differences, (ii) differences in category, and (iii) differences in pied-piping.

6.1 Other obligatory movements
If the A/\(\bar{A}\)-distinction reflects a distinction between obligatory and optional features, then we expect there to be A-movements driven by obligatory features of other categories.

1. The role of activity
One way of restricting the core movement types to A- and \(\bar{A}\)-movement types is to focus on Activity.

(31) Activity Condition: Every item in an Agree relation must have an uninterpretable feature.

⇒ If (31) restricts Agree, it should restrict movement as well. We could then relate the availability of movement to the distribution of uninterpretable features.

▷ \(\bar{A}\)-relations introduce uninterpretable features and so always render an XP active.

▷ We could then tie the availability of A-movement to the Case Filter, or the idea that DPs universally carry an uninterpretable [\(\mu\text{Case}\)] feature.

2. A-movements with other categories
What would A-movement look like if it doesn’t involve a feature of nominals?

▷ Like A-movement, it should be bounded, but not necessarily by the same interveners

▷ No pied-piping, but a restriction to a different category C

▷ No semantic effects necessarily

There are many bounded movements that fit this profile:

▷ head movement, like V-to-T or T-to-C

▷ phrasal movement to establish word order, like VP-fronting in a verb-initial language

▷ adverbs and adjectives can often move relative to other categories, as long as they respect the base order (Rizzi 1990; Cinque 1999):

(32) Movement of adverbs in Dutch must respect base order:
 a. Ik ga helaas waarschijnlijk naar huis.
 I go unfortunately probably to home
 ‘Unfortunately, I’m probably going home.’
b. **Waarschijnlijk** ga ik __ naar huis.
probably go I __ to home
‘I’ll probably go home.’

c. **Helaas** ga ik __ waarschijnlijk naar huis.
unfortunately go I __ **probably** to home
‘Unfortunately, I’ll probably go home.’

d. *Waarschijnlijk* ga ik helaas __ naar huis.
probably go I __ **unfortunately** to home

We’re not used to thinking of this as A-movement, but it has a similar signature.

6.2 Mixed movement

Last week, we briefly discussed the idea that two probing features may sometimes **probe together**.

(33) **Parasitic Agree:**
If a Probe on a certain head H has found a goal G, other probes on H can also enter into Agree/Attract relations with G.

In a featural approach, we might expect to find languages in which a probing head carries both an A-probe and a φ-probe.

(34) **Movement triggered by A- and φ-features:**

```
XP
  X
  [Å, $\varphi$]
    ...
  ... ZP
```

Such movement should…

- be restricted to nominals
- not display pied-piping
- but have the locality profile of A-movement

7 The A/Å-distinction in Dinka

In my thesis, I show that there are languages like this, like Dinka, in which there is no clear A/Å-distinction. Instead, all long-distance movement is limited to nominals and affects case and agreement relations.

7.1 V2 and voice in Dinka

We saw previously that Dinka is a **verb-second** (V2) language:

(35) **Dinka is V2:**

a. Ayén à-cãm cuîn nè pãal.
 Ayen 3s-eat food φ knife
 ‘Ayen is eating food with a knife.’
 Subject-first

b. Cuîn à-cãm Ayén nè pãal.
 food 3s-eat.AVG Ayen.GEN φ knife
 ‘Food, Ayen is eating with a knife.’
 Object-first

c. Pãal à-cãmë Ayén cuîn.
 knife 3s-eat.OBLV Ayen.GEN food
 ‘With a knife, Ayen is eating food.’
 Oblique-first

V2 is accompanied by **Austronesian-style voice morphology.** As in many Austronesian languages, the initial XP is always a **DP in the unmarked case,** with its grammatical function indicated on the V2 verb/Auxiliary.

(36) **Dinka has Austronesian-style voice:**

a. Pãal à-bé dhuôo.
 knife 3s-prf break.ITR.NF
 ‘The knife will break.’
 Subject Voice

b. Pãal à-bi Ból dhôo.
 knife 3s-prf.OV Bol.GEN break.NF
 ‘The knife, Bol will break.’
 Object Voice

c. Pãal à-benè Ayén cuîn câam.
 knife 3s-prf.OBLV Ayen.GEN food eat.NF
 ‘With a knife, Ayen will eat food.’
 Oblique Voice

What does long-distance movement look like in this system?
7.2 Long-distance movement in Dinka

Dinka has two types of long-distance movement, topicalization (37a), and relativization (37b):

(37) Topicalization and relativization in Dinka:

a. Cuñín à-yàa tàak [CP kè cèem Áyèn].
food 3s-HAB.1sg think.NF c eat.OV Ayen.GEN
'The food, I think Ayen is eating.'

b. Yè ñà [CP Op yá tàak [CP cíi Ból tìiij]].
be who HAB.2sg think.NF PRE.OV Bol.GEN see.NF
‘Who do you think Bol has seen?’

At first glance, this is familiar long-distance A-movement:

1. Familiar consequences for information structure and can cross intervening CPs and DPs

2. Island-sensitive and displays reconstruction:

(38) Relative clauses are islands for extraction:

a. *Yè ñó [CP Op cíi Áyèn [ràan [mèr __]]]
be what PRE.OV Ayen.GEN person.cs decorate
see.NF
(lit.) What has Ayen seen someone [who is decorating __]?

pot 3s-PRE.OV Ayen.GEN person.cs decorate see.NF
(lit.) A pot, Ayen has seen someone who is decorating __.

(39) Reflexive reconstructs for binding:

a. Ròt-dèì à-cèí nhíàar.
self.sg.3sg 3s-PRE.3sg love.NF
‘Herself/himself, she/he has loved.’

b. Ròt-dèì à-cèí tàak [CP è cùukù __ nhíàar].
self.sg.3sg 3s-PRE.3sg think.NF c PRE.1PL love.NF
‘Herself/himself, she/he has thought that we have loved.’

5Like in Germanic V2 languages, what I call topicalization marks a variety of things, including an aboutness topic, given topic, and answer focus.

3. Reflexes of successive cyclicity (Van Urk and Richards 2015, last week)

7.3 The role of ϕ-features in Dinka movement

Unlike many other Austronesian languages, movement is tracked by ϕ-agreement. A prefix on the V2 verb/auxiliary expresses the person and number of the initial DP (40a–c).

(40) Agreement on V2 verb/auxiliary:

a. Yîn O-cè miir tìiij.
you 2-PRF giraffe see.NF
‘You have seen a giraffe.’

b. Mòc à-cè yîn tìiij.
man 3s-PRF you see.NF
‘The man has seen you.’

c. Ròr áa-cè yîn tìiij.
men 3p-PRF you see.NF
‘The men have seen you.’

Agreement tracks the DP moved to clause-initial position, not the subject:

(41) Topicalization feeds agreement:

a. Yîn O-cíi môc tìiij.
you 2-PRF.OV man.GEN see.NF
‘You, the man has seen.’

b. Miir à-càa tìiij.
giraffe 3s-PRE.1SG see.NF
‘A giraffe, I have seen.’

c. Mèt rì-càa ké tìiij.
giraffes 3P-PRE.1SG 3PL see.NF
‘Giraffes, I have seen.’

This happens in relativization too and is true regardless of distance:

(42) Relativization triggers ϕ-agreement at C:

be people.cs-which.PL PST-3P-cook
‘Which people were cooking?’

gàam gànlàm]?
give.NF pen
7.4 Long-distance movement and binding

Movement driven by both A- and Ā-features should...

1. Behave like Ā-movement for locality, since a Ā/ϕ-probe should ignore goals that just carry ϕ.

2. In addition, It should be limited to nominals and not allow pied-piping. We can see this with movement of a DP from a PP:

(44) No pied-piping in Dinka

a. Ayèn à-càm cuîn [pp nè pàal].
 Ayen 3s-eat food p knife
 ‘Ayen is eating food with a knife.’

b. Pàal à-cèmè Ayèn cuîn.
 knife 3s-eat.OBLV Ayen.gen food
 ‘With a knife, Ayen is eating food.’

3. Long-distance movement fails to reconstruct for Principle C:

(45) No reconstruction for Principle C:

a. [DP Mánh è Màyên kù Ayèn] à-yūkù tàak
 brother p Mayen.gen and Ayen 3s-hab.1pl think.nf
 [CP ciikè] __ tiij].
 PRF.3pl see.nf
 ‘The brother of Mayen and Ayen, we think they have seen.’

b. Yè [DP mánh-ó è Màyên kù Ayèn] [CP Op
 be brother-which p Mayen.gen and Ayen
 yūkù tàak [CP ciikè] __ tiij].
 HAB.1pl think.nf PRF.3pl see.nf
 ‘Which brother of Mayen and Ayen do we think have they seen?’

4. Long-distance movement fails to display Weak Crossover:

(46) No Weak Crossover in Dinka:

a. Móc ebèn, à-yíjì tiij-dèi luêeel, [CP è __ thèt].
 man every 3s-hab.ov woman-sg.3sg say.nf c cook
 ‘Every man, his wife says is cooking.’

b. Yè [CP Op yìjì tiij-dèi luêeel [CP è nhiér be who HAB.OV wife-sg.3sg say.nf c love.ov
 Bôl __]]?
 Bol.gen
 ‘Who does his wife say Bol loves?’

Conclusion:

A/Ā-properties are properties of features, not of positions.
References

Cable, Seth. 2007. The grammar of Q: Q-particles and the nature of Wh-fronting, as revealed by the Wh-questions of Tlingit. Doctoral dissertation, MIT.
Halpert, Claire. 2012. Argument licensing and agreement in Zulu. Doctoral dissertation, MIT.
Halpert, Claire. 2015. Raising hell. Ms, University of Minnesota.