Lecture 3
Predicates and Their Arguments

7/14/2017
Happy Bastille Day!
From L0 to L1

Categories and Types

<table>
<thead>
<tr>
<th>Category</th>
<th>Descriptor</th>
<th>Some Basic Expressions</th>
<th>Semantic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Formula, sentence</td>
<td>?</td>
<td>(t)</td>
</tr>
<tr>
<td>N(ame)</td>
<td>Individual term</td>
<td>j, m, b</td>
<td>(e)</td>
</tr>
<tr>
<td>N(ame)</td>
<td>Individual variable</td>
<td>x, y, z</td>
<td>(e)</td>
</tr>
<tr>
<td>P1</td>
<td>1-place Predicate</td>
<td>dog', man', bark', break1'</td>
<td>(e, t)</td>
</tr>
<tr>
<td>P2</td>
<td>2-place Predicate</td>
<td>chase', love', break2'</td>
<td>(e, (e, t))</td>
</tr>
<tr>
<td>P3</td>
<td>3-place Predicate</td>
<td>give'</td>
<td>(e, (e, (e, t)))</td>
</tr>
</tbody>
</table>
From L0 to L1

Syntactic Rules (As they differ from those of L0)

1: If \(\delta \) is a 1-place predicate and \(\alpha \) is a name, then \(\delta(\alpha) \) is a sentence.
2a: If \(\delta \) is a 2-place predicate and \(\alpha \) is a name, then \(\delta(\alpha) \) is a 1-place predicate.
2b: If \(\delta \) is a 3-place predicate and \(\alpha \) is a name, then \(\delta(\alpha) \) is a 2-place predicate.
8: If \(\phi \) is an expression of type \(\tau \) containing a free occurrence of \(\nu \), then \(\lambda \nu \phi \) is an expression of type \(\langle e, \tau \rangle \).
Semantic Composition Rules

1: For expressions produced by S1: $[[\delta(\alpha)]_{M,c} = [[\delta]]_{M,c}([[\alpha]]_{M,c})$
2a: For expressions produced by S2a: $[[\delta(\alpha)]_{M,c} = [[\delta]]_{M,c}([[\alpha]]_{M,c})$
2b: For expressions produced by S2b: $[[\delta(\alpha)]_{M,c} = [[\delta]]_{M,c}([[\alpha]]_{M,c})$
8: For expressions created by S8, $[[\lambda \nu \phi]]_{M,c}$ the function (whose domain is the universe of discourse) and whose value on any particular entity is $[[\phi]]_{M,c'}$, where c' assigns that entity as the value of ν.

From L0 to L1

Composition Rules
The Lambda Operator
From L0 to L1

VOS Binary and VSO Flat Representations

give’ (Mary) (flowers) (John) = give’ (John, flowers, Mary)
Semantic Objects

- Propositions
- Entities
- Eventualities
- Properties
- Predicates: Parameterized propositions, saturated by arguments
Sentences express different propositions in context

- I am happy
- I saw him
- You gave it to her
Different Sentences may express the same proposition

- Angelo ordered the cheesecake.
- The cheesecake was ordered by Angelo.
- The waiter served the cheesecake to Angelo.
- The waiter served Angelo the cheesecake.
Argument Structure (Linking and Alignment)

• Under a fixed valence assumption, NL verbs typically express multiple predicates.

• Relations among the predicates expressed can be viewed as result of syntactic combinatorics or relations in the lexicon.

• Other things being equal, verbs link to their arguments in an order that aligns with grammatical and participant hierarchies.
A Brief History of Argument Structure

- DS alignment in classical transformation grammar
- Fillmore’s “case for case”
- Lexicalist interpretation of A-movement
- Exuberant combinatorics (syntactic and semantic)
- Lexical items and words as ephemera or emergent phenomena
Eventuality Descriptions

- Interpreting propositions as descriptions of eventualities
 - Type or kind of eventuality
 - Spatiotemporal location parameter
 - Cast of Participants
Participant Roles

- Event-specific individual roles: the murderer and the deceased
- Role types: heroes and villains
- Traditional typologies of “Thematic Roles/Relations”
Two Tiers of Analysis

- Movement (literal or metaphorical)
 - Theme
 - Source / Goal / Path
- Actions and their Effects
 - Cause, Initiator, Agent (Intentional or Otherwise)
 - Proto-Patient Properties, “Affected Themes”
“Logical Forms” for Eventuality Descriptions

- Jones buttered the toast slowly, with a knife, in the bathroom, at midnight.

- Classical predicate logic

- Davidsonian “logical form of action sentences”

- Neo-Davidsonian representations
Fin