A DISCRIMINATIVE LEXICON APPROACH TO WORD COMPREHENSION, PRODUCTION, AND PROCESSING: MALTESE PLURALS

JESSICA NIEDER
Heinrich-Heine-Universität Düsseldorf

YU-YING CHUANG
Eberhard-Karls-Universität Tübingen

RUBEN VAN DE VIVÉR
Heinrich-Heine-Universität Düsseldorf

HARALD BAAYEN
Eberhard-Karls-Universität Tübingen

Comprehending and producing words is a natural process for human speakers. In linguistic theory, investigating this process formally and computationally is often done by focusing on forms only. By moving beyond the world of forms, we show in this study that the discriminative lexicon (DL) model—operating with word comprehension as a mapping of form onto meaning, and word production as a mapping of meaning onto form—generates accurate predictions about what meanings listeners understand and what forms speakers produce. Furthermore, we show that measures derived from the computational model are predictive for human reaction times. Although mathematically very simple, the linear mappings between form and meaning posited by our model are powerful enough to capture the complexity and productivity of a Semitic language with a complex hybrid morphological system.*

Keywords: discriminative lexicon, Maltese plurals, word-and-paradigm morphology, linear discriminative learning, computational modeling, productivity, primed lexical decision

1. Introduction. Most formal and computational accounts of word structure unfold almost exclusively in the world of forms: forms are related to and compared with other forms. In these accounts the main explanatory action takes place at the level of forms, with rules or constraints explaining the relations among forms that have related meanings, such as singular-plural pairs. Meaning is conceived of as a static complement to the form. In such accounts it is implied that once the form is explained, the meaning will follow. However, this view of meaning as static is put in doubt by latent semantics (Landauer & Dumais 1997), in which the meaning of a form is represented dynamically as its distribution across phrasal contexts. This raises the question of how word forms and dynamic meanings can be comprehended and produced. Under a dynamic conception of meaning, it is not obvious that a form’s meaning follows from its form. We address this question in this article within the theory of the discriminative lexicon (Baayen et al. 2019). We argue that comprehension can be modeled as a mapping of form onto meaning, and production as a mapping of meaning onto forms. Empirically, our focus is on the semiproductive noun plural system of the Semitic language Maltese.

The prosodic theory of nonconcatenative morphology laid out in McCarthy 1981 is firmly grounded in the world of forms. It starts with underlying forms that are the starting point for a set of rules that derive words’ surface forms. A Semitic verb form is conceived of as consisting of a root, filled with consonants that carry the meaning of the lexeme and its derivations, and a melody of vowels in which inflection is expressed. The Arabic form kataba ‘he wrote’, for example, consists of the root √ktb, which expresses

* We thank the members of the research unit ‘Spoken Morphology’ for their helpful feedback and comments. This research was funded by the Deutsche Forschungsgemeinschaft (Research Unit FOR2373 ‘Spoken Morphology’, Projects VI 223/3-1, VI 223/3-2, BA 3080/3-1, and BA 3080/3-2), which we gratefully acknowledge. Additionally, Chuang and Baayen are indebted to funding from the ERC, project WIDE-742545. The data that support the findings of this study are openly available at https://osf.io/rxsbu/.

the lexeme ‘to write’, and the melody aaa, which expresses third-person singular past. Both consonantal root and vowel melody are mapped onto a CVCVCV skeleton from left to right, resulting in the final word form $kataba$. Nouns, too, can have nonconcatenative inflections; in Arabic and Maltese, nonconcatenative plurals are referred to as broken plurals. These plurals can be analyzed prosodically.

In subsequent work, the nature of the CV skeleton changed, but not the fact that forms are mapped onto forms. McCarthy and Prince (1990, 1996) developed a theory, called PROSODIC MORPHOLOGY, in which the skeleton is replaced by prosodic categories, using Arabic nonconcatenative broken plurals as a testing ground. For example, the singular $nafs$ ‘soul’ has a corresponding broken plural $nufuus$. This plural can be characterized as an iamb: a light syllable followed by a heavy syllable. Formally, McCarthy and Prince (1990) account for the iambic plural as a mapping of the phonological material from the leftmost superheavy syllable ($nafs$) of the singular onto an iamb and a concomitant change of vowel quality.

In a further attempt to reduce stipulations about the shape of nonconcatenative morphology, Kastner (2019) proposed for Hebrew that the symbols for the verb and its inflectional features are first inserted into a syntactic tree. Subsequently, general principles of the Hebrew sound system account for the arrangement of the segmental material of the verbal root and its inflectional exponents. For instance, the root node \sqrt{ktb} ‘to write’ and its voice specification $\{a,a\}$ for past tense are inserted into the syntactic tree in a concatenative fashion as $[\text{Tense} [\text{Past} [\text{Voice} [v \sqrt{ktb}]])]$ (where small v is a functional head). This results in the input form ktb,aa for the phonological component. A hierarchy of constraints (Prince & Smolensky 2004) then predicts the optimal output $katab$. Ussishkin (2005), however, proposed that words are derived from other words, subject to a set of prosodic and morphological constraints, in contrast to the derivation of Hebrew verbal forms from consonantal roots argued by McCarthy (1981) and Kastner (2019).

Many computational models of morphology likewise do not predict words’ forms from their meanings, but from other forms of these words. Some of these models set up a list of possible changes that have to be applied to move from one form to another, and then seek to predict which of the possible form changes is appropriate given selected properties of the base word. For instance, Ernestus and Baayen (2003) examined several quantitative models that were all given the task of predicting whether the stem-final obstruent of a Dutch plural noun or verb form is voiced or voiceless. These models, which ranged from recursive partitioning trees and logistic regression models to ANALOGICAL MODELING (Skousen 1989), MEMORY-BASED LEARNING (Daelemans & Van den Bosch 2005), and OPTIMALITY THEORY (Boersma & Hayes 2001), all performed with roughly the same accuracy, suggesting that, given access to the relevant features of the base word, any reasonably decent statistical classifier can accomplish this classification task.\footnote{Thus, the recursive partitioning algorithm of Belth et al. (2021) is also likely to perform well.} All of these models, however, are incomplete, in the sense that to create an actual plural form, the appropriate voicing feature has to be combined with further concatenation of the appropriate plural suffix. For Semitic languages such as Arabic and Maltese, predicting the plural of a noun is set up as a classification problem by Dawdy-Hesterberg and Pierrehumbert (2014), focusing on Arabic, and by Nieder, Tomashcek, et al. (2021), focusing on Maltese. The former study used the GENERALIZED CONTEXT MODEL (Nosofsky 1986); the latter study applied memory-based learning...
(Daelemans et al. 2001), naive discriminative learning (Baayen 2011), and an encoder-decoder deep learning architecture (McCoy et al. 2020) to generate plurals from singulars. The deep learning model stands in the tradition of the past-tense model of Rumelhart and McClelland (1986), who derived English past-tense forms from their present-tense counterparts.

The only way in which semantics plays a role in these grammatical and computational models of inflection is through inflectional contrasts, such as singular vs. plural, which are used to set up separate classes of forms (Albright & Hayes 2003). However, it seems unlikely that native speakers produce plurals from singulars (or vice versa). For instance, in her classic study of children’s knowledge of English morphology, Berko (1958) notes that only 28% of the four- and five-year-olds and only 38% of the five- and seven-year-olds provided the plural *gutches* for the given singular *gutch*. Van de Vijver and Baer-Henney (2014) also found that many children repeat a given novel singular as plural in a wug test in German, and Zamuner et al. (2011) found that Dutch children are unable to form a novel singular from a given novel plural, while they have no problems providing a singular from a known plural. However, they were reasonably successful at providing novel plurals from novel singulars. In addition, Klafkehn (2013) reports that Japanese native speakers are unable to provide inflected words for provided novel words.

All of these results suggest that producing a novel word form is not necessarily as straightforward as simply applying a rule to manipulate a form in an appropriate context. But it is not just results from wug tests that strongly indicate that plurals are not formed on the basis of their singulars. For example, Bybee (1995) argues that in Hausa it is more insightful to characterize a plural in a product-oriented way—as a characterization of what makes a good plural in Hausa—rather than as an instruction for how to turn a singular into a plural. This is due to there being little predictability from singular to plural: a plural and a singular consist of overlapping phonological material, but the overlap can be inconsistent from singular-plural pair to singular-plural pair. Of course, there are other situations in which form-to-form mappings are useful. For instance, for second language learners, instructions on how to create the forms of a paradigm from its principal parts can be quite helpful as a way to efficiently master paradigms, and such instructions can also be helpful for analysts, as a way of coming to grips with the systems of implications among word forms. But whether native speakers derive forms via other forms remains an open question (Blevins 2016, Nieder, Tomaschek, et al. 2021).

In this study, we move beyond the world of forms and model comprehension as a mapping of form to meaning and production as a mapping of meaning to form. We make use of a computational implementation of word-and-paradigm morphology (Matthews 1972, Blevins 2016), the discriminative lexicon (DL) (Baayen et al. 2019), to model the noun system of Maltese, a Semitic language spoken in Europe. The DL model differs from most theories of morphology in that comprehension and production are achieved without requiring theoretical constructs such as stems, exponents, and inflectional classes. In general, the task of morphological theory is often conceptualized as providing a formal mechanism that specifies what are possible meaningful words. The DL model divides this task into two subtasks: first, predicting what forms are possible, given their meanings; and second, predicting what meanings are possible, given their forms.

In psychology, several computational models have been put forward that construct complex words starting from their meanings. The models by Leveil et al. (1999) and Dell (1986) are similar in design to realizational theories of morphology (see e.g. Stump
A discriminative lexicon approach to Maltese plurals

To our knowledge, these two psychological computational models have not been implemented for and applied to languages other than English, and it is therefore unclear whether the mechanisms of spreading activation and interactive activation they make use of can be made to work for complex morphological systems such as Maltese nouns.

A three-layer network model that maps speech input onto semantics was proposed by Gaskell and Marslen-Wilson (1997), though they explicitly shy away from making claims about representations that might develop in the hidden layer of their network. The triangle model of Harm and Seidenberg (2004) likewise addresses the relation between words’ forms and their meanings, using a more complex multilayer network. This model has been tested not only on English, but also on Serbo-Croatian (Mirković et al. 2005). Following their lead, the DL model (Baayen et al. 2019) zooms in on the mappings from form to meaning in visual and auditory comprehension, and from meaning to form in production. As in the connectionist models above, the mapping of both words’ forms and their meanings is represented by high-dimensional numeric vectors. However, the DL model simplifies the connectionist multilayer networks of Gaskell and Marslen-Wilson (1997) and Harm and Seidenberg (2004) by removing all hidden layers. The simple input-to-output network that results is mathematically equivalent to multivariate multiple linear regression.

By representing words’ meanings numerically, it becomes possible to harness the power of distributional semantics (Landauer & Dumais 1997, Mitchell & Lapata 2008, Mikolov et al. 2013) when considering the questions of what meanings are possible given words’ forms and what forms are possible given words’ meanings. This is important, because form and meaning can show intricate interactions. For instance, Baayen and Moscoso del Prado Martín (2005) called attention to irregular verbs in English (and in German and Dutch) being more similar to each other in their meanings than regular verbs are. The greater semantic density of irregular verbs in English may underlie the interaction of semantic deficits and regularity in aphasia reported by Bird et al. (2003) and modeled computationally using distributional semantics by Heitmeier and Baayen (2021). Below, we shall see that the broken plurals and the sound plurals of Maltese may also pattern differently in semantic space.

Several studies suggest that the DL correctly predicts the forms of complex words (see Baayen et al. 2018 for Latin verb inflection, Chuang et al. 2020 for Estonian noun inflection, van de Vijver et al. 2021 and van de Vijver & Uwambayinema 2022 for Kinyarwanda nouns and verbs, and Chuang, Kang, et al. 2021 for Korean verbs). The first goal of the present study is to clarify whether the theory of the DL also correctly predicts Maltese singular and plural nouns. Of particular interest is how well the simple networks used by the DL are able to model not only concatenative morphology, but also nonconcatenative morphology.

The framework of the DL has also been used to predict how words are realized phonetically. Tomaszek et al. (2021) modeled the duration of English word-final [s] for different grammatical functions, Saito et al. (2021) used measures from the model to predict tongue trajectories, Chuang, Vollmer, et al. (2021) predicted word duration for English pseudowords as pronounced by native speakers of English, and Chuang, Kang, et al. (2021) applied the model to word duration in Taiwan Mandarin. The latter study also shows that the priming effects reported for Dutch in Creemers et al. 2020 are correctly predicted by the model (see also Baayen & Smolka 2020 for German). In light of
these results, the second goal of the present study is to clarify whether measures derived from the model help predict lexical-processing costs, as gauged with a cross-modal primed lexical-decision task.

The remainder of this article is structured as follows. We first provide an overview of plural formation in Maltese and report previous experimental and computational studies on Maltese plurals. Section 3 proceeds with an introduction to the DL. We then present the computational models we developed for the Maltese noun system, report how well they perform as a memory for known words, and examine the extent to which the memory is productive, in the sense that it can handle unseen words it has not been trained on. Subsequently, we show how the theory can be used to obtain further insight into the lexical processing of Maltese nouns in comprehension. We conclude this study with a discussion of, on the one hand, the new insights that our results bring to morphological theory, and the limitations of our approach, on the other.

2. Maltese plurals. The turbulent history of Malta is reflected in the national language of the island. Maltese developed from Maghrebi Arabic and has absorbed influences from Sicilian, Italian, and, more recently, English. These influences have affected its lexicon and its morphology (Hoberman 2007).

The Maltese noun plural system shows a perplexing number of possible plural forms. Maltese does have many typically Semitic nonconcatenative plural forms, called broken plurals in the Semitic linguistic tradition, which are characterized by differences in the prosodic structure of a plural as compared to its corresponding singular form. For example, the singular form kelb /kɛlp/ ‘dog’ has the plural form klieb /kliːp/2 ‘dogs’, in which the coda consonant [l] of the singular is found in the onset of the plural form, and the vowel [ɛ] in the singular form corresponds to [iː] in the plural. Schembri (2012) distinguishes eleven different broken plural patterns. But broken plurals account for only a small proportion of Maltese plural forms (Borg & Azzopardi-Alexander 1997 reports a proportion of 10%). In addition to broken plurals, Maltese also has a sizable set of sound plurals, and the majority of plurals belong to this category (Borg & Azzopardi-Alexander 1997, Nieder, van de Vijver, & Mitterer 2021a).

Sound plurals are characterized by additional segmental material at the right side of the plural form in comparison to the singular: for example, the singular prezz ‘price’ has the plural form prezzijiet, where the plural differs from the singular in the presence of a particular plural exponent, the suffix -ijiet. In their work, Nieder, van de Vijver, and Mitterer (2021a,b) distinguish twelve different sound plural patterns (they count the dual forms as a sound plural pattern) with different frequency distributions and productivity. Table 1 gives an overview of the Maltese broken plural and sound plural patterns and the two possible dual forms.

The complexity of the Maltese noun system has two sources. One is the sheer variety of suffixes and patterns exhibited in plurals. This sets Maltese apart from languages in which the complexity of nominal systems is due to nouns falling into different declension classes. The other is the availability of several plural forms for many singulars, without there being noticeable semantic differences among the plural variants. For example, the singular kaxxa ‘box’ has two plural forms: a broken plural, kaxex, and a sound plural, kaxxi; another example is the singular giddieb ‘liar’, which has two sound plural forms, giddieba and giddibin.

2 Another possible phonetic variant given in the online dictionary Ġabra is /klɪːp/.
In addition to sound and broken plurals, for a small number of nouns Maltese shows other plural types, such as the suppletive plural, for example, *mara – nisa* ‘women’, or a double plural marking that is a blend of a broken plural and a sound plural suffix (called plural of the plural in Mayer et al. 2013): for example, the singular *tarf* has the blended plural *trufijiet* ‘edge’. A few words are pluralized with a dual suffix but grammatically behave like plural words, for example, *sieq – saqajn* ‘foot’ (Borg & Azzopardi-Alexander 1997, Mayer et al. 2013).

2.1. Experimental and computational research on Maltese plurals

Both experimental and computational research have been done on the Maltese nominal system. In the following, we first discuss the experimental research on Maltese nouns before turning to the computational studies.

Two experimental studies have clarified that native speakers use information about pattern frequency to produce and process plural forms for singulars they have never heard before (Nieder, van de Vijver, & Mitterer 2021a,b). While some plural suffixes and patterns occur frequently in the language—for example, the sound plural forms ending in *-i* and *-ijiet* and the broken plural patterns characterized by the CV-templates CCVVCVC (broken A) and CCVVC (broken C)—others are found in only a relatively small number of plural forms (see Schembri 2012 and Nieder, van de Vijver, & Mitterer 2021a,b for detailed information about pattern frequency in Maltese).

<table>
<thead>
<tr>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
<th>Plural Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>fardal</td>
<td>fradal</td>
<td>‘aprons’</td>
<td>broken A, CCVVCVC</td>
</tr>
<tr>
<td>birra</td>
<td>birer</td>
<td>‘beers’</td>
<td>broken B, (C)CVVC</td>
</tr>
<tr>
<td>kbir</td>
<td>kbar</td>
<td>‘big (pl.)’</td>
<td>broken C, CCVVC</td>
</tr>
<tr>
<td>ftira</td>
<td>fljar</td>
<td>‘type of bread (pl.)’</td>
<td>broken D, CCVjVC</td>
</tr>
<tr>
<td>bitha</td>
<td>btihi</td>
<td>‘yards’</td>
<td>broken E, CCVVC</td>
</tr>
<tr>
<td>sider</td>
<td>isdra</td>
<td>‘cheeks’</td>
<td>broken F, VCCCV</td>
</tr>
<tr>
<td>marid</td>
<td>morda</td>
<td>‘sick persons’</td>
<td>broken G, CVCCV</td>
</tr>
<tr>
<td>ghodda</td>
<td>ghod</td>
<td>‘tools’</td>
<td>broken H, (gh)VCVC</td>
</tr>
<tr>
<td>elf</td>
<td>eluf</td>
<td>‘thousands’</td>
<td>broken I, VCVC</td>
</tr>
<tr>
<td>gharef</td>
<td>ghorref</td>
<td>‘wise men’</td>
<td>broken J, CVCCVC(V)</td>
</tr>
<tr>
<td>ghamja</td>
<td>ghomja</td>
<td>‘blind persons’</td>
<td>broken K, (gh)VCVC</td>
</tr>
<tr>
<td>karta</td>
<td>karti</td>
<td>‘paper’</td>
<td>sound, -i</td>
</tr>
<tr>
<td>omm</td>
<td>ommijiet</td>
<td>‘mother’</td>
<td>sound, -ijiet</td>
</tr>
<tr>
<td>rixa</td>
<td>rixiet</td>
<td>‘feather’</td>
<td>sound, -iet</td>
</tr>
<tr>
<td>giddieb</td>
<td>giddieba</td>
<td>‘lair’</td>
<td>sound, -a</td>
</tr>
<tr>
<td>mehlus</td>
<td>mehlusin</td>
<td>‘freed’</td>
<td>sound, -in</td>
</tr>
<tr>
<td>kuxin</td>
<td>kuxins</td>
<td>‘cushion’</td>
<td>sound, -s</td>
</tr>
<tr>
<td>triq</td>
<td>triqat</td>
<td>‘street’</td>
<td>sound, -at</td>
</tr>
<tr>
<td>sid</td>
<td>sidien</td>
<td>‘owner’</td>
<td>sound, -ien</td>
</tr>
<tr>
<td>bahri</td>
<td>bahrin</td>
<td>‘sailor’</td>
<td>sound, -n</td>
</tr>
<tr>
<td>hati</td>
<td>hatjin</td>
<td>‘guilty’</td>
<td>sound, -jin</td>
</tr>
<tr>
<td>qiegh</td>
<td>qighan</td>
<td>‘bottom’</td>
<td>sound, -an</td>
</tr>
<tr>
<td>spalla</td>
<td>spallejn</td>
<td>‘shoulder’</td>
<td>dual, -ejn/ajn</td>
</tr>
<tr>
<td>sieq</td>
<td>saqajn</td>
<td>‘foot’</td>
<td>dual, -ejn/ajn</td>
</tr>
</tbody>
</table>

Table 1. Maltese broken plurals, sound plurals, and duals (examples taken from Schembri 2012, Nieder, van de Vijver, & Mitterer 2021a). Words are provided in Maltese orthography. Long vowels are represented as VV in the CV structure for broken plurals. The digraph *gh* is historically a pharyngeal fricative, which was lost in modern Maltese (Borg & Azzopardi-Alexander 1997).
In a production study, Nieder, van de Vijver, and Mitterer (2021a) asked Maltese native speakers to produce plurals for existing singulars and pseudo-singulars. The plurals produced by the participants reflected the frequency of the plural patterns in Maltese. The participants made use of more frequent plural suffixes when they produced sound plurals and of more frequent CV templates when they produced broken plurals (a finding that is also reported by Drake (2018) for Maltese diminutives). Further evidence for the importance of the type frequency of exponents (sound plurals) and CV templates (broken plurals) emerged from a reaction-time study by Nieder, van de Vijver, and Mitterer (2021b). Frequent broken templates and frequent sound plural exponents elicited reaction times that were significantly shorter than those for infrequent ones. This experiment did not provide evidence for an effect of plural type (broken vs. sound): on average, response times for both kinds of plurals were highly similar. We return to this study below, showing that, nevertheless, the way that responses are generated in this task differs for broken plurals and sound plurals.

Computational analyses of the Maltese plural formation have focused on form-to-form modeling using sets of rules or analogical mappings. These computational studies are moving away from an earlier consensus among Maltese scholars, according to which no rules govern broken plurals (as discussed in Schembri 2012). Invariably, the singular form is taken as the starting point for predicting the corresponding plural form. Some models are classifiers for plural classes, while others generate full plural forms, given the corresponding singulars.

Mayer et al. (2013) present a computational study of Maltese broken plurals that focuses on the application of rules to form plurals from singulars. They propose a set of four rules, based on the work of Schembri (2012), which derive broken plurals from their singulars. These rules were shown to correctly derive 75% of all 654 forms in their database with a broken plural. This study shows unambiguously that Maltese broken plurals are to a considerable extent systematic, but it does not address the question of how speakers select between broken and sound plurals. Furthermore, as mentioned above, it is not self-evident from a cognitive perspective that speakers would create plurals from singulars.

Farrugia and Rosner (2008) also focused exclusively on broken plurals, using an artificial neural network with encoder and decoder hidden layers to categorize and produce Maltese broken plurals. As a basis for their work they also edited Schembri’s (2012) analysis. Operating on phoneme-based representations, their model categorized nearly all nouns in their data set with an accuracy of around 98%. But while they report good results for forms the model had seen in training, it did not perform well on unseen forms, achieving exact matches between predicted and observed plural forms for only 26.6% of the cases. This computational model again shows that there are indeed systematic relations between the form of the singular and that of its broken plural, and that these relations can be derived from the data without requiring handcrafted rules. It remains unclear, however, how the model would have performed if it had been trained jointly on broken plurals and sound plurals.

Nieder, Tomaschek, et al. (2021) compared three different computational models to investigate whether it is in principle possible to account for the form-based relations in Maltese nominal paradigms without taking recourse to the construct of the morpheme: the Tilburg memory-based learner (TiMBL; Daelemans et al. 2004), the naive discriminative learner (NDL; Baayen 2011), and an encoder-decoder
network. TiMBL and NDL are classifiers; the encoder-decoder network is a model generating actual plural forms. The models were trained on a data set consisting of both sound plurals and broken plurals. The classifiers were given the task to predict which of eight plural classes (four broken plural classes, and four sound plural classes: three for the three most frequent exponents, and one for all other exponents) is appropriate for a given singular. Under ten-fold cross-validation TiMBL’s best performance was 97%, whereas NDL’s was 88.7%. The best performance of the encoder-decoder model was at 48.22%. Interestingly, although information about the CV template has been reported to increase classification accuracy for Arabic (Dawdy-Hesterberg & Pierrehumbert 2014), such information did not improve the accuracy of the TiMBL classifier for Maltese.

What all of these modeling studies clarify is that there is considerable structure in the Maltese noun system. However, the best-performing models either are trained only on broken plurals, or they are trained to predict form classes, including classes that lump together less frequent form changes. Furthermore, all models focus on production, predicting plurals from singulars without considering words’ meanings, and do not address the comprehension of Maltese nouns. In what follows, we address this broader range of questions within the framework of the DL. Before doing so, we first introduce the data set we used for training and evaluating our models.

2.2. Data set. The data set consists of all broken plurals listed by Schembri (2012) and all word forms tagged as nouns from the MLRS Korpus Malti version 2.0 and 3.0 (Gatt & Čépló 2013). The resulting list of nouns was then enriched with information extracted from a Maltese online dictionary (Gabra; Camilleri 2013) using the free corpus tool Coquery (Kunter 2017), resulting in a data set with singulars, their corresponding plurals, and their glosses. Subsequently, the data set was manually extended with information about grammatical number (broken vs. sound plural, dual, or suppletive), CV structure, number of occurrences (based on the Korpus Malti v. 2.0 and 3.0), origin (Semitic vs. non-Semitic), grammatical gender (based on Aquilina 1987), concreteness (abstract vs. concrete), and type of noun (verbal noun or collective noun).

The resulting data set contains 6,511 word forms in total: 3,364 plurals, 3,132 singulars, and fifteen dual forms. Of the 3,364 plurals, 892 are broken plural forms, while 2,458 are sound plural forms (with a total of eleven different sound plural types and eleven different broken plural types), reflecting the proportion of plural types in use in Maltese. The remaining fourteen plurals are neither of the broken nor of the sound type: eight of these words have a double plural marking, for example sema (sg.) – smewwiet (pl.) ‘sky’, which is a combination of a broken and a sound plural, and six have a suppletive plural, for example, mara (sg.) – nisa (pl.) ‘women’; see Borg & Azzopardi-Alexander 1997 for further details. The fifteen duals included forms like id (sg.) – idejn (dual) ‘hands’.

3. Predicting Maltese noun inflection. All of the models reviewed in §2.1 predict the appropriate form of a Maltese plural from its corresponding singular. However useful such rules for building forms from other forms may be for the teaching of a second language, it is far from clear that native speakers and young L1 learners would follow the same procedure (Dell 1986, Levelt et al. 1999, Zamuner et al. 2011, Blevins 2016). The DL model proposed by Baayen et al. (2019) takes as its point of departure that the
task of morphology is to explain how listeners understand complex words and how speakers produce them. In other words, the DL focuses on understanding words’ meanings given their forms and producing words’ forms given their meanings. Furthermore, the relation between form and meaning is modeled as immediate, without any additional layers of intervening representations.

The central ideas underlying the DL’s perspective on form and meaning are illustrated in Figure 1. In the upper left, the matrix C specifies the respective form vectors for three words, w_1, w_2, w_3, with values for two form features, f_1 and f_2. In the upper right, the matrix S specifies the semantic vectors for the same three words, which have values on the semantic dimensions s_1 and s_2. The form vectors are displayed in the lower left, and the semantic vectors in the lower right. The mapping F takes the red vectors and changes them into the blue vectors. Formally, this is done by post-multiplying C with F: $CF = S$. Conversely, the G matrix takes the blue vectors and maps them onto the red vectors: $SG = C$. The mappings that the DL sets up between numeric vectors representing forms and numeric vectors representing meanings are the simplest mappings possible. They can be conceptualized as simple artificial neural networks connecting form units (f_1, f_2) and semantic units (s_1, s_2). In other words, the mappings implement full connectivity between all form units and all semantic units. The networks do not make use of any hidden layers.

Equivalently, the mappings of the DL can also be understood as implementing multivariate multiple regression. For comprehension, for instance, the F matrix can be interpreted as the matrix with beta coefficients of a regression model. The beta weights in the first column of F are used to predict the response variable given by the first column of S. Likewise, the beta weights in the second column of F are used to predict the response variable given in the second column of S. The same logic applies to the beta weights in G: for instance, the beta weights in the first column are used to predict the response

![Figure 1](image-url)
variable in the first column in C. The method that we used to estimate the mappings F and G is taken from linear algebra; for technical details, the reader is referred to Shafaei-Bajestan et al. 2021.

In general, for a given set of n words and m dimensions in which differences in form are expressed, we bring together their numeric form vectors into an $n \times m$ form matrix C. Given k-dimensional vectors representing words’ meanings, we set up an $n \times k$ semantic matrix S. The $m \times k$ mapping F takes the vectors in C and transforms these vectors as precisely as possible into the semantic vectors of S. This is accomplished by solving the equation $CF = S$.

For production, the DL model posits a $k \times m$ mapping G from the meaning vectors S to the form vectors in C. This matrix is estimated by solving $SG = C$. For all but the smallest toy examples, the predicted form vectors $\hat{C} = SG$ will only approximate the targeted gold-standard form vectors C, which is why, following statistical practice, we use the notation \hat{C} rather than C. The same holds for the predicted semantic vectors \hat{S}. Nevertheless, the estimated weights are optimal, in the sense that they minimize the mean squared error. They represent the endstate of learning that a simple two-layer artificial neural network can achieve by endlessly iterating through the training data with the incremental learning rule of Widrow and Hoff (1960). In what follows, we refer to the learning of the mappings using the mathematics of multivariate linear regression as linear discriminative learning (LDL).

3.1. Constructing the form matrix. We can illustrate the central concepts of LDL with the Maltese toy lexicon listed in Table 2. This lexicon consists of a singular word for a male dog, a singular word for a female dog, and the plural word for both.

<table>
<thead>
<tr>
<th>LEXEME</th>
<th>NUMBER</th>
<th>GENDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>kelb</td>
<td>KELB</td>
<td>singular M</td>
</tr>
<tr>
<td>kelba</td>
<td>KELB</td>
<td>singular F</td>
</tr>
<tr>
<td>klieb</td>
<td>KELB</td>
<td>plural M</td>
</tr>
</tbody>
</table>

Table 2. Paradigm for the Maltese noun kelb ‘dog’. In this example the singular word has both a masculine and a feminine form. For words that have a gender distinction in the singular, we used the masculine as the gender for the plural, since Maltese does not distinguish gender in the plural.

The first modeling step is to make a decision about how these word forms can be represented as numeric vectors. One possibility is to decompose word forms into triphones, which target, in a crude way, context-sensitive phone representations. Heitmeier et al. (2021) present a systematic overview of modeling options for word-form representations in LDL. They report best generalizations for triphones (as compared to biphones or quadrophones) due to their discriminatory power as a result of a balanced number of unique cues (see Heitmeier et al. 2021). For our example lexicon, there are eleven distinct triphones. We couple each distinct triphone with a form dimension. Words that contain a given triphone receive the value 1 for this dimension, and otherwise the value 0. We thus obtain the following form matrix C for our sample lexicon, where the hash mark # represents a word boundary.

\[
(1) \quad C = \begin{bmatrix}
#ke & kel & elb & lb# & lba & ba# & #kl & kli & lie & ieb & eb#
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
Instead of representing words’ forms by indicating which triphones are present, we can set up form vectors that decompose a word’s form into its constituent syllables. In this study, again based on the results of Heitmeier et al. (2021), we opted for bisyllable cues that not only are a linguistically informed unit driving articulation (Levelt et al. 1999) but also are known to capture certain suprasegmental effects (Heitmeier et al. 2021). Below, we report results for simulations using these two ways of representing word-form information.

3.2. Constructing the semantic matrix. The row vectors of the semantic matrix \mathbf{S} represent a word form’s meaning numerically. Within the general framework of distributional semantics, many algorithms are now available for deriving semantic vectors (known as ‘embeddings’ in computational linguistics) from corpora (Mikolov et al. 2013, Baroni et al. 2014, Pennington et al. 2014, Joulin et al. 2016a,b, Bojanowski et al. 2017, Yang et al. 2017). In the present study, we explore two kinds of semantic vectors: vectors that we constructed ourselves in a linguistically informed way, which we call SIMULATED VECTORS, and ready-made vectors that were generated with FASTTEXT (Joulin et al. 2016a,b), which we call CORPUS-BASED VECTORS.

SIMULATED VECTORS. The row vectors of the semantic matrix \mathbf{S} represent words’ meanings in a high-dimensional space. We can simulate such vectors using a random number generator. The idea underlying this approach is similar to the statistical concept of ‘generating’ a statistical model: when we model a response variable y as a linear function of x, as in 2, the hope is that we can generate a data set that has all of the properties of the observed data, with the measurement errors ϵ_i as the only difference.

$$ y_i = a + bx_i + \epsilon_i \tag{2} $$

When simulating semantic vectors, we do the same: we set up a model that generates semantic vectors that represent the semantic structure of words, apart from word-specific or idiosyncratic aspects of words’ meanings (see e.g. Sinclair 1991, Booij 1996 for word-specific semantics of inherent inflection). For our example lexicon, we generated eleven-dimensional vectors, matching the dimensionality of the form matrix \mathbf{C}. The result is a straightforward table with real-valued numbers.

$$ \begin{array}{cccccccccccc}
kelb & S1 & S2 & S3 & S4 & S5 & S6 & S7 & S8 & S9 & S10 & S11 \\
-0.46 & 4.16 & 8.50 & -4.46 & 8.86 & -4.11 & 8.42 & 9.21 & -25.75 & 15.83 & -14.93 \\
kelba & 0.61 & -11.93 & 8.09 & 1.00 & 3.44 & -11.98 & 8.72 & -4.75 & -33.29 & 10.39 & -2.12 \\
klieb & 5.67 & 9.84 & 11.26 & 0.85 & 10.69 & -4.24 & 0.21 & 4.81 & -26.47 & 10.82 & -11.76 \\
\end{array} \tag{3} $$

However, if we use this method to create semantic vectors for each word form, then, unavoidably, the resulting semantic vectors are almost completely uncorrelated, which implies that the meanings of these words are understood to be semantically entirely unrelated. When considering monomorphemic words, such uncorrelated vectors are justifiable as a very first approximation that is no worse (but also no better) than representing words’ meanings by their own symbolic nodes. However, since inflected words share inflectional features, we need to generate vectors that properly reflect that, for instance, plurals are semantically more similar to other plurals, and less similar in meaning to singulars.

Following Baayen et al. (2019), we generated semantic vectors of inflected words by taking the (generated) vector of the lexeme and adding to it additional (generated) vectors, one for each inflectional function. For the Latin noun *horti* ‘garden’ (genitive
singular), for instance, a vector for genitive and a vector for singular are added to the vector of garden.

\[(4) \text{horti} = \text{garden} + \text{singular} + \text{genitive}\]

For Maltese nouns, we considered several semantic features: whether the noun is derived from a verb (e.g. participles), whether it has collective semantics, whether it has masculine or feminine gender, and its number. The first two features were coded as privative oppositions: that is, we added a vector representing collective semantics to collective meanings, but left the semantic vectors of all other nouns unchanged. For the latter two features, we generated semantic vectors under the assumption that here we have equipollent oppositions. For number, we thus decided to construct three semantic vectors, one for singular meaning, one for dual meaning, and one for plural meaning.

For the forms \textit{kelb}, \textit{kelba}, and \textit{klieb}, the semantic vectors in our example lexicon given above (matrix \textbf{S} in 3) were obtained by adding the pertinent inflectional vectors to the vectors of the lexemes, together with error vectors representing words’ semantic idiosyncrasies.

\[(5) \text{kelb} : \text{kelb} + \text{singular} + \text{masculine} + \varepsilon \\
\text{kelba} : \text{kelb} + \text{singular} + \text{feminine} + \varepsilon \\
\text{klieb} : \text{kelb} + \text{plural} + \text{masculine} + \varepsilon \]

An alternative coding for number, which we did not pursue, would be to code number as a privative opposition, with an unmarked singular and marked dual and plural. However, as the broken plurals are formally not marked variants of their corresponding singulars, we opted for implementing equipollent semantic vectors for number.

In summary, we generate semantic vectors for inflected forms by addition of the primitive vectors for their constituent meanings. This additive process is how we approximate the conceptualization of the semantics of inflected words.

Corpus-based vectors using fasttext. Although simulated vectors have been found to be useful for modeling morphological processing in comprehension and production, they make the simplifying assumption that all base word lexemes are semantically unrelated: their simulated semantic vectors are almost completely orthogonal. In addition, the way inflectional semantics is accounted for may also require more precision; see, for example, Shafaei-Bajestan et al. 2022 for discussion of the semantics of the English noun plural. Instead of working with simulated vectors, Baayen et al. (2019) derived semantic vectors for both content lexemes and inflectional functions such as singular and plural by first morphologically tagging a corpus (in their study, the TASA corpus; Ivens & Koslin 1991) and then using a method from distributional semantics to construct semantic vectors both for content words and for the inflectional (as well as derivational) functions identified by the tagger.

Since computational resources for Maltese are limited, for the present study we complemented modeling using simulated vectors with modeling using ready-made vectors that were created with fasttext (Joulin et al. 2016a,b). Fasttext is an open-source library for text classification and representation that offers the possibilities of training a fasttext model on a set of data or downloading pretrained vectors for various languages from https://fasttext.cc/docs/en/crawl-vectors.html. For this study, we opted for the latter approach.

An advantage of modeling with fasttext vectors, compared to simulated vectors, is that the LDL mappings will be able to take into account similarities in meaning between
content words, as well as inflectional similarities. However, the algorithm underlying fasttext constructs semantic vectors for words from semantic vectors of substrings of words by representing words as a sum of their character n-grams (see Joulin et al. 2016a,b for details on how the vectors were created). As a consequence, it cannot be completely ruled out that for inflected words the algorithm is capturing not only similarities in meaning but also similarities in form.

We extracted fasttext vectors for the word forms in our data set using the pre-trained 300-dimensional word vectors that are available for Maltese at https://fasttext.cc/docs/en/crawl-vectors.html. For 4,056 of the 6,511 nouns in our data set, fasttext vectors were available; of these 4,056 word forms, 2,266 are singulars, 1,781 are plurals, and nine are dual forms.

In order to obtain some insights into how well fasttext captures the difference between singular and plural meaning, we projected the 300-dimensional fasttext space onto a two-dimensional plane using principal components analysis. A scatterplot of nouns in the plane of the first two principal components, color-coded for number and plural type, is shown in Figure 2. Interestingly, we find distinguishable clusters of singulars (light green) and plurals (orange, dark green), albeit with considerable overlap. In addition, sound plurals (orange) and broken plurals (dark green) seem to dwell in somewhat different semantic subspaces. This is confirmed by a linear discriminant analysis (LDA), which showed that a classification of singular, sound plural, and broken plural words using the first fifty principal components reaches 85% classification accuracy.

![Figure 2](image-url)

Figure 2. Projection of fasttext semantic vectors onto a two-dimensional plane. Number and plural types (sound and broken) are color-coded. Singulars and broken plurals cluster more to the right on PC1, whereas sound plurals and broken plurals cluster more to the top on PC2.
Apparently, number and type of plural are to some extent intertwined with word meaning. This interaction of regularity with semantics replicates a similar interaction for English regular and irregular verbs reported by Baayen and Moscoso del Prado Martín (2005).

Figure 3 addresses how well fasttext captures differences in gender. Despite substantial overlap of the clusters, LDA, again using the first fifty principal components, achieved a classification accuracy of 79% and 70% for singular and plural words, respectively. For the other semantic features labeled in our data set (concreteness, verbal noun, collective noun), however, due to the fact that usually one level has overwhelmingly more tokens than the other, no clustering in the semantic space could be observed.

![Figure 3](image.png)

Figure 3. Projection of fasttext semantic vectors onto a two-dimensional plane, spanned by the first two principal components. The left panel plots singular feminine (red) and masculine (blue) words, and the right panel plots plural words. PC2 captures plurality to some extent, whereas PC1 captures aspects of gender, resulting in somewhat differentiated clustering within number for feminine vs. masculine nouns.

Above, we mentioned that fasttext looks into words by representing word forms as a bag of n-grams and that, as a consequence, it cannot be ruled out a priori that similarities in meaning are confounded with similarities in form. However, given the complexities of the Maltese plural forms, it is unlikely that the clustering visible in Fig. 2 is driven predominantly by form similarity. Nevertheless, replication of this interaction of plural type and semantics using, for instance, word2vec (Mikolov et al. 2013) would strengthen the present conclusions for Maltese.

Evaluating model performance. Before reporting how well the DL model approximates the Maltese noun system, we need to explain how we evaluate model performance.

To evaluate comprehension, we calculated the correlations between a given word’s predicted semantic vector (\hat{s}_i) and all of the gold-standard semantic vectors in the lexicon (the row vectors of S). If \hat{s}_i has the highest correlation with the semantic vector of the targeted word (s_i), comprehension is considered successful. By contrast, unsuccessful comprehension occurs when the highest correlation is with a word other than the target word. It should be noted that for homophones, we consider comprehension to be correct as long as \hat{s}_i has the best correlation with one of the homophone meanings: for example, Maltese *xark* /ʃərk/, which can mean either ‘shark’ or ‘a person
who conducts business shrewdly or acts for their own material benefit’ (note that there also is a Semitic word to express ‘shark’ available in Maltese: kelb il-bahar). This is because here we are modeling the processing of words in isolation. Since it is not possible to recognize a specific homophone meaning out of context, we therefore adopted this lenient evaluation metric for comprehension.

With respect to production, as a first step, we generated for each word i the predicted form vector \hat{c}_i from its semantic vector s_i. This predicted form vector, however, provides information only about the amount of semantic support for the sublexical cues (such as triphones or bisyllables); it does not inform us about the order in which well-supported cues have to be placed for articulation. For ordering, the model makes use of the order information that is implicit in the sublexical cues. Take triphones, for example. The triphone kel can be followed by elb (to form the word kelb), given the identity of the final diphone el in kel and the initial diphone el in elb. In the absence of such overlap (e.g. for kel and lie), no sequential ordering is possible. As the lexicon becomes larger, the number of possible triphone combinations also grows, resulting in multiple candidate forms for a given form vector \hat{c}_i. The candidate selected for articulation is chosen such that it best realizes the meaning the speaker has in mind. Technically, this is accomplished by first generating for each candidate form ω_j its predicted semantic vector \hat{s}_j, and then selecting from these semantic vectors the one that is most similar to the targeted semantic vector s_i that is to be expressed.

In other words, we generate the predicted semantic vectors for all candidate forms and select as model prediction the form vector associated with the predicted semantic vector that has the closest meaning to the targeted meaning (a process called synthesis-by-analysis in Baayen et al. 2018).

For the simulations presented in this study, we used the JudILing package, an implementation of LDL in the Julia language (Luo et al. 2021). For production, we used the ‘learn_paths’ function for ordering sublexical features into words. This algorithm takes predicted form vectors and learns to predict at what position(s) in a word a sublexical cue occurs. In this way, each of a word’s sublexical cues is associated with a number reflecting how well it is supported for its position in the word. We refer to this number as a cue’s positional support. Only cues with sufficient positional support are taken into account when assembling the set of word candidates. What counts as sufficient positional support is determined by a threshold value θ: only words with a positional support exceeding θ are taken into consideration. More detail about the ‘learn_paths’ algorithm can be found in Luo et al. 2021. In §5.4, we show that the total amount of positional support for a word’s cues is predictive for reaction times to Maltese plurals.

4. Modeling results.

4.1. Evaluation on training data. With two cue representations (one using triphones and one using bisyllables) and two semantic representations (one using simulated semantic vectors and the other using fasttext vectors), we have in total four models. For comparison, the dimension of the simulated vectors is set to 300, mirroring the dimensionality of the fasttext vectors. It should be noted, however, that since fasttext vectors are not available for all of the word forms in the data set, we therefore worked with a smaller data set ($n = 4,056$) when using fasttext. Comprehension and production accuracies of the four models are presented in Table 3. For comprehension, bisyllable cues yielded higher accuracies than triphone cues, regardless of the kind of
semantic representation. With respect to production, we again see an overall advantage of bisyllable cues. In addition, while the difference between vector types is not large for bisyllable cues, with triphone cues, model performance with simulated vectors is a lot worse than that with fasttext vectors. Given that there are more bisyllable cues than triphone cues (9,821 vs. 4,272 for the full data set), the absence of sufficient semantic structure in simulated vectors (e.g. all lexeme and inflectional features are orthogonal to one another) seems to be potentially harmful when the form space is not well differentiated. However, the model may be overfitting when bisyllable cues are used. We return to this possibility below.

<table>
<thead>
<tr>
<th></th>
<th>COMPREHENSION</th>
<th>PRODUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIMULATED</td>
<td>FASTTEXT</td>
</tr>
<tr>
<td>TRIPHONE</td>
<td>93.1%</td>
<td>95.6%</td>
</tr>
<tr>
<td>BISYLLABLE</td>
<td>99.8%</td>
<td>99.9%</td>
</tr>
</tbody>
</table>

Table 3. Model performance for comprehension (left) and production (right) for four combinations of cue and semantic representations. For production, the threshold was set to 0.005 for both the simulated and the fasttext models.

Given the high accuracy of all four models, we can conclude that the model generally has a good memory for understanding and producing Maltese plurals. However, we do not know how the model performs with respect to inflected forms that it has not encountered during training. In other words, we do not yet know to what extent the model is productive. To test this, we ran the model on a subset of the data that was not used during training. The results of this process are reported in the following section.

4.2. Evaluation on held-out data. The question of whether our model is productive for Maltese is of considerable theoretical interest because the noun system of Maltese is not straightforwardly regular. Although some rules can be formulated, indicating that the system is not just random, the many patterns for broken plurals and the wide variety of plural exponents characterize a system for which full productivity cannot be expected. It would actually be strange and worrisome if computational models were able to predict unseen forms with close to 100% accuracy.

Since regularity is generally seen as a prerequisite for productivity, the Maltese noun system is perhaps best characterized as semiproducive. This possibility receives support from the observation that native speakers of Maltese are often unsure about what the proper plural of an unknown or infrequent word might be, as indicated by the production study in Nieder, van de Vijver, & Mitterer 2021a. In the light of these considerations, a substantial drop in prediction accuracy is expected for held-out data, compared to the accuracy for the training data.

We also expect to find that production accuracy will be somewhat lower than comprehension accuracy for held-out data. This is due to the synthesis-by-analysis approach of the model: to select a candidate path for production, the LDL model uses the results from the comprehension model (see Baayen et al. 2018, Heitmeier et al. 2021 for further details). The familiar asymmetry between production and comprehension (Smolensky 1996, Boersma 1998, Pater 2004) was already visible in the results for the training data (see Table 3), and we anticipate it will be present, and perhaps more pronounced, for the held-out data.

To examine model productivity, we held out 10% of the words in our data set as testing data. The held-out words were selected based on the criterion that all of the
sublexical cues and inflectional features of the words were already available to the model during training. Furthermore, the held-out words were constrained to have lexemes that occurred in the training data. In addition, we used the smaller data set, instead of the full data set, to enable comparisons between simulated and fasttext vectors.

The testing data contained 174 singular and 205 plural forms. Of the plural forms, 192 were sound plurals, twelve were broken plurals, and one was a suppletive form. During training, bisyllable cues consistently outperformed triphone cues, both with simulated semantic vectors and with fasttext vectors. This indicates that the models with bisyllable cues, which outnumber triphone cues, are not overfitting. In what follows, we report only the results obtained with bisyllables. For comprehension, simulated vectors performed better than fasttext, with accuracies at 77.8% and 63.6%, respectively. When the top ten candidate meanings are considered, comprehension accuracy increases to 85.5% and 96.3%. A closer inspection of the comprehension errors reveals a qualitative difference between the two kinds of semantic vectors. For simulated vectors, the majority of the errors (91.7%) involve lexemes; that is, the recognized form has a different lexeme from the targeted form. For fasttext vectors, by contrast, only about half of the errors are lexeme errors. The other half involve number errors: for example, the singular form *minuta* ‘minute’ is recognized as its plural counterpart *minuti*. The reduced number of errors for held-out data in the model with simulated vectors suggests that the orthogonality of the number features (singular, dual, plural) in the simulated semantic space is beneficial for generalization. However, the simulated vectors run the risk of oversimplifying the true complexity of plural semantics in Maltese (see e.g. Shafaei-Bajestan et al. 2022 for English noun plurals).

For production, model performance with simulated and fasttext vectors is similar, at 68.3% and 64.4%, respectively. With simulated vectors, the correct form appears among the top ten candidates for 72.8% of the held-out words; with fasttext vectors, this number increases to 90%. Table 4 displays the comprehension and production results for the held-out data.

<table>
<thead>
<tr>
<th></th>
<th>Comprehension</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulated</td>
<td>Fasttext</td>
</tr>
<tr>
<td>TOP 1 CANDIDATE</td>
<td>77.8%</td>
<td>63.6%</td>
</tr>
<tr>
<td>TOP 10 CANDIDATES</td>
<td>85.5%</td>
<td>96.3%</td>
</tr>
</tbody>
</table>

Table 4. Model performance for comprehension (left) and production (right) for the held-out data. Rows indicate if only the predicted meaning (top one candidate) or the correct meaning among top ten candidates was considered for the evaluation.

The majority of correctly produced forms belong to singulars and sound plurals, for both kinds of semantic vectors. Interestingly, in the case of broken plural forms we observe a different pattern: among the twelve broken plural forms in the held-out data set, the model using simulated vectors produced only one form correctly, while the

3 The triphone models with simulated and fasttext vectors are provided in the supplementary material, which can be accessed at https://osf.io/rxsbu/. The overall trend is similar, except that both comprehension and production accuracies are lower.

4 For production of the held-out data, we lowered the threshold from 0.005 to 0.0005, and for each word form, we allowed two cues to have support lower than the set threshold. These adjustments were motivated by the fact that some of the cues, due to their low frequency of occurrence in the training data set, are not encountered often enough to be properly learned and therefore require a more lenient criterion for acceptance as candidate cues for articulation.
model with fasttext vectors correctly produced all twelve forms. This may be due to the clustering of broken plurals in semantic space as gauged with fasttext (cf. Fig. 2).

Further analyses of the production errors reveal that the types of errors made by simulated and fasttext models are also qualitatively different. Overall, we identified seven different error types for the production models, as shown in Table 5.

<table>
<thead>
<tr>
<th>ERROR TYPE</th>
<th>SIMULATED</th>
<th>FASTTEXT</th>
<th>TARGET</th>
<th>TARGET LEXEME</th>
<th>PREDICTED</th>
<th>PREDICTED LEXEME</th>
</tr>
</thead>
<tbody>
<tr>
<td>incorrect word</td>
<td>84</td>
<td>11</td>
<td>ġar</td>
<td>neighbor</td>
<td>brejk</td>
<td>brake</td>
</tr>
<tr>
<td>wrong affix</td>
<td>15</td>
<td>2</td>
<td>satellite</td>
<td>satelliti</td>
<td>satellitiku</td>
<td>n.a.</td>
</tr>
<tr>
<td>phonetically close</td>
<td>10</td>
<td>68</td>
<td>mera</td>
<td>mirror</td>
<td>mara</td>
<td>woman</td>
</tr>
<tr>
<td>singular</td>
<td>5</td>
<td>29</td>
<td>delegati</td>
<td>delegates</td>
<td>delegat</td>
<td>delegate</td>
</tr>
<tr>
<td>plural</td>
<td>2</td>
<td>25</td>
<td>minuta</td>
<td>minute</td>
<td>minuti</td>
<td>minutes</td>
</tr>
<tr>
<td>alternative plural</td>
<td>2</td>
<td>0</td>
<td>qlab</td>
<td>cores</td>
<td>qalbiet</td>
<td>cores</td>
</tr>
<tr>
<td>missing diacritic</td>
<td>2</td>
<td>0</td>
<td>rivalita</td>
<td>rivalry</td>
<td>rivalita</td>
<td>n.a.</td>
</tr>
<tr>
<td>SUM</td>
<td>120</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Distribution of production errors from models with simulated and fasttext vectors, along with examples for target word forms and their lexemes, and predicted word forms and their lexemes (*n.a.* is given as the lexeme for nonce words).

In total, the two models tested produced 120 and 135 errors, respectively. For most of the errors made by the simulated model, eighty-four of 120 (70%) compared to eleven of 135 (8.1%) for the fasttext model, the predictions are far off from the targeted word forms. We labeled this category **INCORRECT WORD**. While some of these incorrect word forms are actual Maltese words—for example, the model-predicted ġar ‘neighbor’ for brejk ‘brake’—in some cases LDL produced new word forms, for example, the pseudoword liku for ballu ‘dance (sg)’.

For fifteen of 120 (12.5%) errors in the simulated model and two of 135 (1.5%) in the fasttext model, the models predicted a wrong affix. For example, the word satellita ‘satellite’ has the sound plural form satelliti. While the target form was satellita, the models instead produced the nonexisting form satellitiku, using a wrong affix or additional phonological material, in this case -ku, for their predictions.

We labeled ten of 120 (8.3%) errors in the simulated and sixty-eight of 135 (50.4%) errors in the fasttext model as **PHONETICALLY CLOSE**. In these cases, LDL predicted a word form that is phonetically similar to the target word form, for example, mera ‘mirror’ instead of mara ‘woman’. For the fasttext model, these kinds of errors account for the majority of all errors, again highlighting the qualitative difference in the models’ predictions.

Other errors, five and two of 120 (4.2% and 1.7%) for the simulated model compared to twenty-nine and twenty-five of 135 (21.5% and 18.5%) for the fasttext model, involve mixing up singular and plural forms. For instance, the models predicted the singular delegat for delegati ‘delegates’. Likewise, in another case the target word form was minuta ‘minute’, but the models predicted the plural form minuti ‘minute’ instead.

In a few cases, two of 120 (1.7%) errors for the simulated model (this error did not occur in the fasttext model), LDL predicted an alternative plural form for a word that has multiple plural forms in our data set; for example, qalba ‘core (sg)’ has three plural forms, one sound plural (qalbiet) and two broken plurals (qlab and qliebi). The testing data contained the broken plural form qlab, and the model predicted the sound plural qalbiet instead. This attraction to sound plurals is in line with the findings of the Nieder,
van de Vijver, and Mitterer (2021a) production study, in which native speakers tended to use frequent sound plural patterns for novel words.

The last minor group of errors, two of 120 (1.6%) errors in the simulated model (this error again did not occur in the fasttext model), concerns a missing diacritic. In two cases, the LDL prediction did not contain the diacritic of the target word form, for example, rivalita for rivalità.

4.3. Discussion. The explorations of Maltese noun inflection with LDL as the computational engine for mappings between form and meaning clarified that model performance is excellent with the training data. For the held-out data, the model understands and produces unseen forms with an accuracy around 70%, which is actually surprisingly high for a noun system that is far from straightforwardly regular in many ways and that can be expected to only be semiproductive. Compared to previous modeling results obtained within the framework of word-and-paradigm morphology (Nieder, Tomaschek, et al. 2021), accuracy is much higher than with an encoder-decoder deep learning model, but lower than with the exemplar-based model implemented with TiMBL. The TiMBL model, however, was given a much simpler task, namely to predict classes of form changes, including classes bringing together many low-frequency patterns of change. In comparison to data from real speakers, the LDL model results on held-out data reflect the uncertainty of native speakers when it comes to infrequent words: Nieder, van de Vijver, and Mitterer (2021a) asked participants to provide plural forms for given singulars, and observed that participants often were not able to provide the correct plural for existing infrequent singulars.

One modeling result is especially intriguing: namely, that properly producing broken plurals for held-out data requires empirical, corpus-based vectors rather than simulated vectors. Conversely, simulated vectors outperform fasttext vectors when it comes to sound plurals. These observations suggest that there is a stronger isomorphism between the form space and the semantic space for the broken plurals.

We conclude that the theory of the DL, as a computational formalization of word-and-paradigm morphology, provides a useful framework for predicting what forms are possible for listeners to understand, and what forms are possible for speakers to produce.

In what follows, we address the question of whether the way the DL model formalizes listening and speaking (admittedly at a high level of symbolic abstraction, especially when it comes to the representation of words’ forms) can contribute to our understanding of human lexical processing. In the next section, we therefore examine whether measures derived from the model can contribute to enhancing statistical models fitted to response latencies in a primed lexical-decision experiment with Maltese nouns that is reported in Nieder, van de Vijver, & Mitterer 2021b.

5. Modeling Maltese priming reaction times.

5.1. Maltese priming study. Nieder, van de Vijver, and Mitterer (2021b) used a cross-modal priming paradigm with a lexical-decision task to investigate the lexical storage and processing of Maltese sound and broken plurals. The study included 144 written singular targets from a Maltese noun list that appeared in one of two priming conditions: auditory primes were either (i) corresponding plural prime word forms, for example, klieb – KELB ‘dogs – dog’, or (ii) phonologically and semantically unrelated control prime word forms that show the same plural suffix or pattern as the corresponding plural word, for example, bliet – KELB ‘cities – dog’. Two lists were created in
order to prevent the same singular target appearing in both conditions for the same participant. Additionally included were 144 nonce singular fillers created from existing Maltese singulars by changing the offset of the word forms (and thus keeping an initial phonological overlap with existing words). These nonce fillers were presented with the corresponding plural primes of the existing singulars that were used to create nonce words, for example, klief – KELT ‘dogs – nonce filler’.

To investigate a possible frequency effect, Nieder, van de Vijver, and Mitterer (2021b) substantially reduced the variety of Maltese plurals (see again Table 1 above for an exhaustive list of the Maltese plural suffixes and patterns), including just two frequent (-i and -ijiet) and two infrequent (-a and -at) sound plural suffixes, and two frequent (CCVVCVC, broken A, and CCVVC, broken C) and two infrequent (CCVjjVC, broken D, and CCVVCV, broken E) broken plural templates. The choice to include these specific plurals was motivated by the frequency results of a production study they reported in Nieder, van de Vijver, & Mitterer 2021a.

The results of the cross-modal priming study show no significant effect for plural type (sound vs. broken), but Nieder, van de Vijver, and Mitterer (2021b) do report that the reaction times of their participants were significantly influenced both by the frequency of the suffixes and patterns and by the word frequency of the singular targets. They conclude that Maltese sound and broken plurals are processed the same way, with pattern frequency being an important factor for lexical access.

5.2. DATA SET. In order to explore the usefulness of our computational model for understanding actual lexical processing, we reanalyzed the data set from Nieder, van de Vijver, & Mitterer 2021b. It contains 7,885 observations (after removal of incorrect answers, practice trials, and outliers) from fifty-nine participants.

In the following, when using the frequency of suffixes and templates as a variable for the model, we use the terms PATTERN FREQUENCY and PATTERNS to refer to both suffixes and templates. For the present study, we only used the reaction times for corresponding singular-plural pairs, omitting the control condition that was present in the experiment. Thus, to take the examples given above, we included reaction times (RTs) for klief – KELB ‘dogs – dog’ but not for bliet – KELB ‘cities – dog’. This left us with 3,995 observations. We then removed all words for which we did not have fasttext semantic vectors, resulting in a data set with 2,951 total observations.

5.3. A BASELINE MODEL. Extending the analyses of Nieder, van de Vijver, and Mitterer (2021b), we predicted response times with PLURAL TYPE (TYPE), whether the plural form is sound or broken, and PATTERN FREQUENCY (PFREQ), whether the plural pattern is frequent or infrequent (cf. Table 1). In addition, we also included three lexical predictors pertinent to target words: FREQUENCY (FREQ), NEIGHBORHOOD DENSITY (ND),5 and WORD LENGTH (LEN), measured in characters per word. In order to detect potential nonlinear trends of the numeric predictors, we made use of the GENERALIZED ADDITIVE MIXED MODEL (GAMM) provided by the ‘mgcv’ package (v. 1.8-36; Wood 2017). The RTs (in seconds) were first inverse-transformed and multiplied by −1 (so that small numbers still indicate fast RTs), and all of the numeric predictors were log-transformed.

5 Neighborhood density is calculated on the basis of the vocabulary of fasttext, the size of which is about 120 thousand words, with punctuation and hyphenated words excluded.
In the model we allowed the two categorical factors to interact and included by-subject random intercepts.

Word length did not contribute to improving model fit and therefore is not considered in the analyses to follow. This is perhaps unsurprising, given that word length is highly correlated with neighborhood density ($r = 0.75$) and frequency ($r = −0.3$). A summary of the resulting model is presented in Table 6.

A. PARAMETRIC COEFFICIENTS

<table>
<thead>
<tr>
<th>Term</th>
<th>EST</th>
<th>SE</th>
<th>t-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>−1.7891</td>
<td>0.0380</td>
<td>−47.1069</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>TYPEsound</td>
<td>0.0158</td>
<td>0.0178</td>
<td>0.8915</td>
<td>0.3727</td>
</tr>
<tr>
<td>PFREQinfrequent</td>
<td>0.0448</td>
<td>0.0179</td>
<td>2.5050</td>
<td>0.0123</td>
</tr>
<tr>
<td>TYPEsound : PFREQinfrequent</td>
<td>−0.0198</td>
<td>0.0287</td>
<td>−0.6877</td>
<td>0.4917</td>
</tr>
</tbody>
</table>

B. SMOOTH TERMS

<table>
<thead>
<tr>
<th>Term</th>
<th>edf</th>
<th>ref.df</th>
<th>F-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(FREQ)</td>
<td>2.6296</td>
<td>3.1974</td>
<td>16.5970</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>s(ND)</td>
<td>3.4840</td>
<td>3.8494</td>
<td>6.7397</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>s(participant)</td>
<td>56.3240</td>
<td>58.0000</td>
<td>35.5194</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Table 6. Summary of a GAMM fitted to inverse-transformed RTs (−1/RT), with plural type, pattern frequency, target frequency, and neighborhood density as fixed-effect predictors, and by-participant random intercepts.

For this smaller data set, reanalyzed with a GAMM instead of an LMM, and with ND as an additional predictor, there is no evidence that RTs differ for broken and sound plurals, replicating the findings of Nieder, van de Vijver, and Mitterer (2021b) for the original full data set. The coefficient of pattern frequency indicates that plural primes with infrequent patterns induced longer RTs compared to plurals with frequent patterns. Figure 4 presents the partial effects of frequency and neighborhood density on RTs. The lines in the two plots center around zero because the intercepts and the adjustments of categorical predictors (part A in Table 6) are not included in the predictions: it is the effect of the predictor by itself that is shown. For frequency, the effect is nearly linear, but it levels off for the highest-frequency words, a pattern often observed for

Figure 4. Effects of frequency and neighborhood density on RTs, indicated by the wiggly line. The blue areas represent one standard error away from predictions. The rugs at the bottom indicate data point positions.
A discriminative lexicon approach to Maltese plurals

The effect of neighborhood density, by contrast, is much more wiggly, and almost U-shaped. With the increase of neighborhood density, RTs first decrease and then increase. This U-shaped pattern suggests that participants responded faster for more probable values of ND, as found in the center of the ND distribution, and more slowly for atypical values of ND, as found for atypically low and atypically high values of ND.

5.4. Predicting reaction times with LDL predictors. For predicting RTs with measures based on discriminative learning, we opted to use the model with bisyllables as cues and fasttext word embeddings as semantic vectors. Bisyllables were used as cues due to the better performance for these cues in training (see again Table 3). We used fasttext vectors because, as demonstrated above, unlike simulated vectors they are remarkably sensitive to semantic differences between stems, number, plural types (broken vs. sound), and gender. Moreover, recall that the model using fasttext vectors not only produced qualitatively different production errors (see Table 5 again) but also, contrary to the model using simulated vectors, managed to arrive at correct predictions for all broken plurals in the held-out data.

There are several potential measures that can be derived from an LDL model (see Chuang & Baayen 2021 for an overview). We found two measures particularly useful for understanding Maltese unmasked primed lexical-decision latencies: one measure quantifying how well primes’ forms can be learned, and the other measure quantifying how closely the meaning of the prime plural already approximates the meaning of the target singular.

First consider the form measure, henceforth labeled prime support. The measure is defined as the sum of the positional semantic supports that the bisyllable cues of a given plural prime word receive. By way of example, the word trabi, the plural form of tarbija (sg.f.) ‘baby’, contains three bisyllable cues: #.tra, tra.bi, and bi.#, at positions 1, 2, and 3, respectively (‘.’ denotes syllable boundaries). As described in §3.2, the ‘learn_paths’ function in the JudiLing package calculates, for each cue position, the amount of support a bisyllable cue of the target word receives. That is, given the semantics of trabi, the positional support measure quantifies how certain the model is that #.tra should occur at position 1, tra.bi at position 2, and bi.# at position 3. For this example, the positional supports the three bisyllable cues receive are 0.25, 0.20, and 0.28, respectively. The prime support measure sums these three individual supports (i.e. 0.25 + 0.20 + 0.28 = 0.73). The larger the prime support, the more predictable a prime word’s form, given its semantics, and the better its form is learned. This measure is motivated by two considerations. First, according to the motor theory of speech perception (Liberman & Mattingly 1985, Galantucci et al. 2006), understanding the auditory prime necessarily involves internal production. Accordingly, the prime support measure, which captures the extent to which a word’s temporally ordered triphones are supported by that word’s semantics, is an integral part of the process of ‘analysis by synthesis’. Empirical support for this measure is provided by Chuang et al. (2023), who observed that the total positional support for Mandarin words was a codeterminant of their spoken word durations. Second, within the theory of the DL, internal comprehension is assumed to guide production

6 Model fit can be further improved by including by-target random intercepts. However, due to very high concurrency, this model becomes uninterpretable: the covariates do not explain anything that is not already explained by the word-specific random intercepts. We therefore did not include by-target random intercepts in this model or in the model reported below.
(the previously introduced synthesis-by-analysis approach; Baayen et al. 2018). In this approach, comprehension and production are understood as more interlocked and interwoven than in classical models in which production and perception are allocated to encapsulated modules.

The second measure, henceforth labeled preactivation distance, addresses the relation between plural prime words and their corresponding singular target words. It gauges the extent to which listening to a prime plural word semantically preactivates (or primes) the meaning of the target singular word. The preactivation distance is defined as the Euclidean distance between the predicted semantic vector of a prime word and the gold-standard semantic vector of its target word. A large value for this measure indicates that the predicted meaning of the plural prime word is far away in semantic space from the meaning of the singular target word. Conversely, a small preactivation distance indicates that the prime word already closely approximates the meaning of the target word. This measure is inspired by a similar measure proposed in Baayen & Smolka 2020 on the basis of a naive discrimination learning network, prime-to-target preactivation, which calculates the extent to which a target word is already activated by the cues of the prime word. The current measure is modified to further take the semantics of prime and target words into account.

![Figure 5](image-url)

Figure 5. Boxplots of classical measures (frequency and neighborhood density, top panel) and LDL measures (prime support and preactivation distance, bottom panel).
Similar to the baseline model, we fitted a GAMM to the inverse-transformed RTs with by-participant random intercepts, but this time with prime support and preactivation distance as predictors. In addition, we asked a GAMM to predict the effects of both measures for sound and broken plurals separately, given that, as shown in Figure 5, in contrast to frequency and neighborhood density (top panel), a plural type difference emerges in the model and is naturally captured by the LDL measures (bottom panel), though the difference is more obviously pronounced for prime support than for preactivation distance. The summary of the resulting model is presented in Table 7, and Figure 6 visualizes the partial effects of the two measures for sound and broken plurals.

For prime support (Fig. 6, top panel), if we focus on where most data points are (indicated by rugs at the bottom of each figure), for both sound and broken plurals, the effect emerges as roughly inverse U-shaped: with increasing prime support, RTs first increase and then decrease. Interestingly, the peaks of the inverse U-shape effects for both plural types coincide with their respective first quartile (25th percentile). This suggests that for three quarters of the data, plurals that can be well predicted by semantics
prime their singulars to a larger extent, resulting in shorter RTs. This pattern of results is in line with the effect of prime-to-target preactivation as reported in Baayen & Smolka 2020. The trend, however, reverses for 25% of the plurals that are least learnable from their semantics. The inverse U-shaped curves suggest a trade-off between not knowing the prime’s pronunciation, which makes it more like a pseudoword, and knowing the prime’s pronunciation well, which makes it more like a real word and thus enables faster responses. How these two forces are balanced, and why the slowest responses are found at the first quartile, is unclear to us.

With respect to preactivation distance, the effect is seen only for broken plurals (Fig. 6, bottom right). It is nearly linear, with RTs becoming shorter as preactivation distance increases. At first sight, the trend is puzzling, as one might have expected that if the prime fails to preactivate the target, RTs should be longer, but in reality, they are shorter. To make sense of this effect, we need to take a step back and have a critical look at the priming paradigm. Priming is often understood as involving facilitation of lexical access to the target. In general, however, compared to an identity baseline, primes typically give rise to longer rather than shorter response latencies. Primes are facilitating only when they are compared to an unrelated control baseline. In other words, unrelated primes are more disruptive than related primes, and related primes are more disruptive than identity primes.

The interpretation of primes as disrupting and interfering with normal lexical processing is supported by the experiments reported by Libben et al. (2018). Their study made use of a primed visual lexical-decision task, with two-constituent compounds as target words and one of their constituents as primes. They observed longer RTs for more frequent primes, in combination with the usual shorter RTs for more frequent target compounds. In other words, their experiment indicates that the more frequent a prime is, the more it disrupts the processing of the target (see also Andrews 1997 and Forster & Hector 2002 for interference in priming and lexical retrieval).

With respect to the present experiment, a smaller preactivation distance likewise bears witness to a similarly disruptive effect of the prime. Since the plural and singular of a word are semantically highly similar in the first place, they are thus highly confusable and render difficult deciding on the target’s lexicality in general. And since the prime and target are semantically more similar, the smaller the semantic distance of a prime to its target, the slower participants were to make a lexicality decision, thus leading to longer RTs. Such a disruptive effect is more pronounced in broken plurals. The presence of a plural suffix in sound plurals (see Table 1) possibly alleviates processing difficulties that arise when prime and target are very similar in meaning. Under close semantic proximity,
sound plurals, thanks to the presence of a suffix, are easier to distinguish from their targets than broken plurals are, which are more likely to be similar to simple words.

5.5. Discussion. How does the GAMM with LDL predictors compare to the baseline model with pattern frequency, target frequency, and neighborhood density as predictors? To address this question, we compared Akaike’s information criterion (AIC) for the two models. The AIC of the baseline model is 1,900, and that of the LDL-based model is 1,880. The corresponding evidence ratio is 22,026, indicating that the LDL-based GAMM is 22,026 times more likely than the baseline model to minimize the information loss.

We did not include target frequency as a predictor in the GAMM with prime support and preactivation distance, for two reasons. First, within the framework of the DL, there are no word units with which frequency counts can be associated. Second, for modeling, we have made use of the multivariate multiple regression method for estimating weights, which represents the endstate of learning. At the endstate of learning, for which all token frequencies have increased to infinity, frequency effects are no longer present (see Heitmeier et al. 2021 and Shafaei-Bajestan et al. 2021 for a detailed discussion).

Frequency of occurrence does come into play when incremental learning algorithms are used. For the present study, we did not explore incremental learning for two reasons. First, for representing words’ meanings, we would need incrementally updated semantic vectors. Unfortunately, incrementally updated fasttext vectors are not available for Maltese. Second, although incremental updating of the network is implemented in the JudiLing package for comprehension, it is not fully implemented for production. Developing a fully fledged incremental version of the model is a target for further research. We do note, however, that when target frequency is added as predictor to the GAMM with LDL predictors, while prime support remains significant, preactivation distance does not, and the effect size of target frequency reduces substantially. This is due to the high correlation between preactivation distance and target frequency \((r = 0.62)\), resulting in high concurvity and rendering the effects uninterpretable. Similarly, concurvity increases with neighborhood density added to the LDL model, as it is also highly correlated with preactivation distance \((r = -0.63)\).

It is noteworthy that in the baseline model with classical predictors, the type of prime was not supported as a predictor. In the model with LDL measures as predictors, an effect of the prime is detected, albeit not the originally anticipated effect of priming by plural type. In fact, according to this model, both a property of the prime (its ‘pronounceability’) and the semantic relation of the prime to the target (gauged with preactivation distance) are the crucial predictors for participants’ lexicality decision making.

6. General discussion. We conclude this study with a discussion, on the one hand, of the new insights that our results bring to morphological theory, and the limitations of our approach, on the other.

The semiproductivity of the Maltese plural poses a challenge for computational modeling. Any system, whether based on rules, analogy, or machine learning, needs to strike a balance between providing a good memory for the forms in use and doing justice to the extent that the system is productive. We have shown that the discriminative lexicon model finds such a balance: it provides an accurate memory for both the comprehension and production of known words, and it also performs reasonably well when given the task of producing or understanding novel, unseen forms. Given the semiproductivity of
the Maltese plural, it is actually surprising how well prediction for unseen words works. This finding supports earlier descriptive studies that have called attention to substantial regularities in the Maltese plural system (Nieder, van de Vijver, & Mitterer 2021a, Schembri 2012, Mayer et al. 2013).

The theory of the DL currently does not include algorithms implementing decision making in experimental tasks such as lexical decision. Nevertheless, some headway can be made by incorporating measures derived from the theory as predictors in statistical models for experimental measures such as RTs. Two such measures, one gauging how well we know a word’s form and the other assessing how closely the meaning of the prime approximates the meaning of the target, were found to improve the quality of a GAMM model fitted to the RTs in a primed lexical-decision task. The resulting model forced us to reconsider how to understand priming.

Rather than facilitating lexical access to the target, primes may actually be disruptive. Among highly semantically relevant singular-plural word pairs, primes that are less similar in meaning to the target give rise to reduced interference. It should be kept in mind, however, that these results are tentative, based as they are on a post-hoc reanalysis, using exploratory data analysis, of the experiment reported earlier by Nieder, van de Vijver, and Mitterer (2021b), and further replication studies will be essential for consolidating the present findings.

From this set of results, we conclude that the algorithm of linear discriminative learning, previously tested on English (Chuang, Vollmer, et al. 2021), Estonian (Chuang et al. 2020), German (Heitmeier et al. 2021), Indonesian (Denistia & Baayen 2022), Kinyarwanda (van de Vijver et al. 2021), Korean (Chuang, Kang, et al. 2021), and Latin (Baayen et al. 2018), also provides a fruitful window on nonconcatenative morphology.

The approach to the Maltese plural system that we have worked out in this study, which is a computational implementation of word-and-paradigm morphology (Blevins 2016), differs from previous studies using computational modeling in that both production and comprehension are modeled. Instead of defining the task of morphological theory as providing a formal mechanism specifying what are possible meaningful words, the DL framework explicitly addresses two challenges: first, predicting what forms are possible, given their meanings; and second, predicting what meanings are possible, given their forms. The present study is limited by the fact that the form representations we made use of are based on abstract sublexical features such as letter or syllable n-grams, and it is currently an open question how the model will perform when, for instance, features derived from the acoustic signal are used (see Shafaei-Bajestan et al. 2021 for an exploration).

Our study also contributes to the theory of morphological productivity. Productivity is usually investigated for specific affixes. We have shown that we can assess the productivity of a whole system by inspecting how well the model’s networks generalize to understanding and producing unseen forms. Several researchers have suggested that the productivity of rival affixes (e.g. -al, -ion, -ment) should be assessed jointly (Wurzel 1970, Corbin 1983, Zwanenburg 1983). The present model for Maltese provides one way that this suggestion can be implemented: many different suffixes for sound plurals and many different templates for broken plurals are all considered jointly.

Inspection of the semantics of Maltese singulars and plurals, using distributional semantics, clarified that the broken plurals, sound plurals, and singulars form partly overlapping but distinguishable clusters in semantic space. Furthermore, feminine and
masculine nouns show some clustering in semantic space that is slightly different for
singles and plurals. These results show that the semantic vectors of inflected words
have considerably more structure than expected in approaches in which plural inflection
realizes a fixed morphosyntactic feature. As the semantic vectors that can be simulated
for inflected words with the JudiLing package implement fixed shifts for a given mor-
phosyntactic feature, it is clear that such vectors capture only part of the true complexity
and richness of the semantics of inflected words. Simulated vectors construct a use-
ful scaffolding for inflected words’ semantics, sufficient to set up effective mappings
between form and meaning, but insufficient for modeling the details of how form and
meaning interact.

Since all models, including the one presented here, are idealizations, it is useful and
necessary, we think, to reflect upon the differences between our model and native speak-
ers of Maltese. The input to our model is a list of words and their semantics, conceptu-
alized as embeddings. The model assumes that these forms and meanings are correct for
any given speaker, but, of course, this is an idealization, given that actual usage varies
across speakers (Sinclair 1991, Bybee 2010). Native speakers reported to us that they
frequently hear other speakers use plurals that they had not heard before, but neverthe-
less find understandable (J. Nieder, p.c., 2019).

Whereas native speakers learn continuously and incrementally, we have modeled the
endstate of learning, of a learner with perfect memory and undivided attention to nouns
alone. Obviously the existence of such a learner is a myth. It is possible to model in-
cremental learning in LDL, but we do not have a sufficient amount of learning data for
Maltese nouns to reliably model their learning. We leave this open for further research.

Our model represents a single (mythical) learner, but in reality there are individual
differences between learners. Milin et al. (2017), for example, found evidence from
skilled Russian readers that some readers accelerated as they progressed in a new text,
whereas others slowed down. They connected this behavior to individual differences
in the use of perceptual cues. Such individual differences in the use of cues would
also affect acquisition of Maltese nouns. This could be modeled by learner-specific
thresholds determining the number of candidate forms a speaker is willing to take into
consideration (see also Chuang et al. 2020).

Keeping its limitations in mind, we contend that our model is useful as a quantita-
tive tool for investigating high-level properties of human learning. Our model not only goes
beyond predicting possible forms given another form, as is usual in computational mod-
els of morphophonology, but also provides model-based measures that predict human
processing.

We conclude with noting that the LDL learning engine of the DL model strives for
simplicity and interpretability. Formally, this engine carries out multivariate multiple
linear regression on form and meaning. The assumption that mappings between form
and meaning are linear undoubtedly involves substantial simplifications. Nevertheless,
as illustrated in the present study, this simple approach already works surprisingly well,
suggesting that the noun system of Maltese itself is also roughly linear. Because the
architecture of the network is fixed, and because there are very few hyperparameters
(such as the threshold parameter that has to be set for production), the performance
of the model is almost completely determined by the representations selected by the
researcher for representing form and meaning, and the data. This, we think, makes the
model especially useful as a tool for linguistic analysis.
REFERENCES

A discriminative lexicon approach to Maltese plurals

A discriminative lexicon approach to Maltese plurals

The broken plural in Maltese—A description. Bochum: Brockmeyer.

Shafaei-Bajestan, Elnaz; Masoumeh Moradipour-Tari; Peter Uhrig; and R. Harald Baayen. 2022. Semantic properties of English nominal pluralization: Insights from word embeddings. Tübingen: University of Tübingen, ms.

Nieder Department of General Linguistics Building 23.21, Room 02.111 Heinrich-Heine University Düsseldorf Universitätsstr. 1 40225 Düsseldorf, Germany [nieder@phil.hhu.de] [yu-ying.chuang@uni-tuebingen.de] [Ruben.Vijver@hhu.de] [harald.baayen@uni-tuebingen.de] [Received 28 September 2021; revision invited 27 February 2022; revision received 30 July 2022; accepted pending revisions 23 September 2022; revision received 12 October 2022; accepted 13 October 2022]