ON MEASUREMENT AND QUANTIFICATION:
THE CASE OF MOST AND MORE THAN HALF

Stephanie Solt
Zentrum für Allgemeine Sprachwissenschaft

The quantifiers most and more than half pose a challenge to formal semantic analysis. On the one hand, their meanings seem essentially the same, prompting accounts that treat them as logically equivalent. On the other hand, their behavior diverges in a number of interesting ways. This article draws attention to some previously unnoticed contrasts between the two and develops a novel semantic analysis of them, based on principles of measurement theory. Most and more than half have logical forms that are superficially equivalent (per Hackl 2009), but that place different requirements on the structure of the underlying measurement scale: more than half requires a ratio scale, while most can be interpreted relative to an ordinal scale or one with a semiordered structure. The latter scale type is motivated by findings from psychophysics and by psychological models of humans’ approximate numerical abilities. A corpus analysis is presented that confirms the predictions of the present account.*

Keywords: quantification, scales, cardinality, measurement theory, number cognition

1. INTRODUCTION.
1.1. MODES OF COMPARISON. Suppose I have two objects—rocks, let’s say—and I want to know whether the first is heavier than the second. There are (at least) two ways that I might go about finding this out. To take one approach, I could place the first rock on a scale and write down its measured weight, do the same with the second rock, and then compare the two values I have recorded (e.g. 452 grams vs. 319 grams). Alternatively, I could place the two rocks on the two pans of a balance scale and observe which side hangs lower, without in any way representing or recording the weight of either rock individually.

Now suppose that the question is whether the first rock weighs more than half as much as the second. In this case, the first procedure can still be applied: I weigh the first rock and record that value, weigh the second rock and divide that value by two, and then compare the result to the first value. But in this case, the second procedure will not work: ‘half as much as the second rock weighs’ is not an object that can be placed on a balance.

There is a fundamental difference between the two modes of comparison illustrated above. The first assigns each entity a numerical measure that can be compared to the measures of other individuals and that may serve as input to mathematical operations (in the example above, division by two). The second merely establishes a relation of ‘greater than’ between two entities. Given some set of entities, we could, via a series of pairwise comparisons, establish a rank ordering of its members. This ordering could in turn be given a numerical representation in an order-preserving way, for example, by

* Portions of this material have been presented at the 4th Workshop on OT and Interpretation, the CUNY Syntax Supper, Modeling Interaction, Dialog, Social Choice, and Vagueness (MiDiSoVa), the 84th annual meeting of the LSA, and Logical Models of Reasoning with Vague Information (LoMoReVI), and I would like to thank these audiences for their comments and suggestions. For very helpful discussions and comments on earlier versions of this article, I am especially grateful to Anton Benz, Helmar Güst, Justin Halberda, Larry Horn, Manfred Kriika, Bill McClure, Rick Nouwen, Uli Sauerland, Jakub Szymanik, and Carla Umbach. I would also like to express my gratitude to three anonymous Language referees and to editor Greg Carlson, whose input has been of immense help in preparing this version. Finally, thanks to Nicole Gotzner and Nadja Reinhold for assistance with the corpus analyses, and Nia Jones, Shiva Moliagh, Sergio Quiroz, Camilo Rodriguez Rondero, Jacob Shier, and Tom Wells for assistance with the coding of corpus examples. Work on this article was supported by the European Science Foundation (ESF) and the Deutsche Forschungsgemeinschaft (DFG) under grants 925/4 and 1157/1-1.
assigning the number 1 to the highest-ranked entity, 2 to the next highest ranked, 3 to the third highest ranked, and so forth. But assuming we have nothing more than simple entities to be compared (e.g. no calibrated weights in multiples of one gram), the numbers assigned in this way would in an important sense be arbitrary. By contrast, in the case of the first procedure, the only arbitrariness is in the choice of the unit of measurement; once this is fixed, so too is the value assigned to each individual.

These observations are by no means new. There is an entire field of study, namely measurement theory, devoted to understanding how the properties of and relationships between entities can be represented numerically (Kranz et al. 1971). A basic finding is that not all types of relationships can be given a numerical representation that supports comparisons such as that between the ratios of measures. Results from cognitive psychology support a somewhat related distinction in how humans perform comparisons: in particular, comparison of the sizes of two sets may proceed via a precise symbolic representation of their cardinality, or via a more basic approximation representation of their magnitude that is essentially analog rather than digital in nature (Dehaene 1997).

The main theme of the present article is that distinctions of this sort are relevant to language as well. Specifically, certain expressions of measure assume the possibility, at least in principle, of applying one or the other of these procedures to their assessment. This distinction has consequences for both the distribution and the interpretation of these items.

The domain of inquiry within which I explore this topic is quantification, with specific focus on the proportional quantifiers *most* and *more than half*, as in the following.

1. a. **Most** Americans have broadband internet access.
 b. **More than half** of Americans have broadband internet access.

2. a. **Most** of the electricity used in the United States is produced at power plants.
 b. **More than half** of the electricity used in the United States is produced at power plants.

The specific claim that I argue for is that *more than half* assumes the first of the two modes of comparison discussed above, while *most* favors something closer to the second.

More broadly, the results from this domain will provide evidence for the relevance of measurement-theoretic concepts to natural language meaning. Specifically, measurement scales vary in the strength of the ordering relations that they are based on, and this has linguistic consequences. Beyond this, this case study will point to a meaningful connection between the semantics of quantificational expressions and the cognitive representation of quantity and measure.

1.2. **On most and more than half.** The pair *most* and *more than half* presents a challenge from the perspective of formal semantic analysis. On the one hand, they are on the surface quite similar in meaning. For example, both 1a and 1b would seem to be true in the case that the following holds.

(3) # of Americans with broadband > # of Americans without broadband

This apparent equivalence is recognized in both classic works on quantification (e.g. Westerståhl 1985, Keenan & Stavi 1986, van Benthem 1986, Higginbotham 1995, Chierchia 1998a) and elementary semantics textbooks (e.g. Chierchia & McConnell-Ginet 2000), all of which assign *most* a logical representation that renders it equivalent to *more than half*.

On the other hand, it is now well known that the behavior of *most* and *more than half* diverges in a number of nontrivial ways. Most obviously, speakers commonly have the
intuition that *most* and *more than half* differ in their lower bounds: while a simple majority is sufficient to establish the truth of an example such as 1b with *more than half*, a greater proportion is required for the corresponding *most* example (e.g. 1a) (see e.g. Huddleston & Pullum 2002, Horn 2005). This is illustrated nicely by examples such as the following.

(4) a. ?? *Most* of the American population is female.
 b. *More than half* of the American population is female.

In the situation where the American population has a very slight female skew (in 2014, the numbers were 50.8% female vs. 49.2% male), 4b is a true statement, while 4a is at the very least infelicitous. Speakers do not entirely agree as to the nature of the infelicity: some judge 4a as outright false, while others feel it to be true but inappropriate or misleading. But there is no disagreement that there is a sharp contrast here.

Contrasts in interpretation between *most* and *more than half* have also figured prominently in the debate on the semantics/pragmatics interface. *More than half* is inarguably defined by its lower bound. On the neo-Gricean view championed in particular by Horn (2005), *most* is likewise semantically lower bounded, with the upper bound (‘not all’) derived pragmatically via scalar implicature. An alternate view is offered by Ariel (2004, 2005), who proposes that the lexical meaning of *most* provides an upper as well as a lower bound, denoting a proper subset of a set that is larger than any other subset in a partitioning (an analysis that nonetheless allows *most* to be truthfully asserted when *all* obtains).

From another perspective, Szabolcsi (1997), following Sutton (1993), points out surprising contrasts such as the following, which demonstrates that *more than half*, but not *most*, licenses binomial each.

(5) a. *The professors met most of the boys each.*
 b. The professors met *more than half* of the boys each.

Finally, Hackl (2009) demonstrates experimentally that despite their apparent equivalence, *most* and *more than half* exhibit differences in on-line sentence processing. Hackl’s findings are discussed in more depth below.

Yet there are further differences between *most* and *more than half* that have not, to my knowledge, been previously discussed. Consider the following pairs, involving examples of the use of *most* drawn from the Corpus of Contemporary American English (Davies 2008–),1 and the corresponding sentences formed by replacing *most* with *more than half*. In each case there is a noticeable contrast: while the (a) sentence is entirely felicitous, the (b) sentence is either odd or has a quite different feel to its interpretation.

(6) a. *Most* sadness diminishes with the passage of time …
 (Public Interest, Winter 2005)
 b. ?? *More than half* of sadness diminishes with the passage of time …

(7) a. *Most* pastel hues have a calming effect.
 (Prevention, Dec. 2003)
 b. ?? *More than half* of pastel hues have a calming effect.

(8) a. *Most* teens want to fit in with their peers.
 (CNN YourHealth, 8/31/2002)
 b. ?? *More than half* of teens want to fit in with their peers.

(9) a. She noted lights on in *most* of the houses she passed …
 (The silenced: A novel, by Brett Battles, New York: Dell, 2011)
 b. She noted lights on in *more than half* of the houses she passed …

1 Details on this corpus are provided in §3.
Thus while 6a is entirely felicitous, 6b is peculiar, an effect that seems to come about because it implies that sadness can somehow be quantitatively measured. Likewise, in contrast to the unobjectionable 7a, 7b has the odd implication that we have some exhaustive list of pastel hues and have gone down it to determine for each whether it has a calming effect. Example 8 presents a different sort of contrast: the (a) sentence is entirely natural, having a generic-like interpretation, similar to what would obtain with a bare plural and a quantificational adverb (e.g. Teens usually/mostly/typically want to fit in with their peers). The (b) sentence, by contrast, is odd, and in particular the generic flavor is lost entirely. Rather, to the extent that it is acceptable at all, it has what might be termed a ‘survey results’ interpretation, seeming to report on some sort of survey of teens. Finally, in 9 the contrast is not so much in acceptability, but rather more subtly in interpretation and possible context of use: 9a could be used to report the individual’s impressions, while 9b seems to require that she has counted the total number of houses, and the number in which the lights are on.

As far as I am aware, there has been no attempt in the semantics literature to address patterns such as these. Nor is it clear that any of the few existing accounts of this pair could provide a natural explanation of these facts. To take one possibility, Horn (2005) suggests that the greater length and complexity of more than half relative to most could be expected to constrain its use, in that marked expressions are typically restricted to marked contexts. But while this might explain some interpretive effects (and I suggest below that something like this has a role to play), it is hard to see how length or syntactic complexity alone could account for the sharp contrasts in acceptability exemplified in 6–8.

In this article, I attempt to offer a comprehensive answer to the puzzle posed by these two quantifiers: How is it that most and more than half are on the one hand seemingly equivalent, while on the other hand diverging in their behavior in the various ways discussed above? The central claim is that what lies at the heart of the matter is the difference between the two sorts of measurement procedures discussed above.

The structure of the article is as follows: I lay out the core of the proposal in §2 and show how it accounts for data such as 6–9. Some broader predictions for the distribution and interpretation of the two quantifiers are outlined. A corpus analysis in which these predictions are tested is then presented (§3), and some further differences between most and more than half are identified. I outline one possible way to formalize the relationship between noun phrase semantics and measurement in §4, and relate the present account to an alternate approach, that of Szabolcs 1997. Section 5 concludes and briefly discusses possible extensions.

2. Proposal.

2.1. Lexical semantics. I take as my starting point a proposal by Hackl (2009) that most and more than half have distinct logical forms that respect their internal composition. Most should be analyzed as the superlative form of many (an idea that goes back to Bresnan 1973 and earlier work), while more than half should be analyzed as a comparative, incorporating the notion of half, namely division by two. Building on this, I propose the following logical forms for the two quantifiers, which are slightly generalized versions of Hackl’s.2

2 In Hackl’s formulation, the lexical entries of most and more than half are defined in terms of a set cardinality operator, which limits their application to occurrence with count nouns. The formulations in 10 can be extended to mass nouns.
Here A and B range over sets, and μ_S is a measure function, that is, a function that maps entities to degrees on the scale S. For both quantifiers, the specific scale is left unspecified. In the case of count nouns, the scale can be (though is not always) the counting numbers, in which case μ_S corresponds to a cardinality operator on set sizes. In the mass domain, a scale tracking some other dimension is involved; for example, in 2, the scale might be electrical energy as measured in kilowatt hours. Below we will see that the underspecification of the scale has further consequences.

As pointed out by Hackl, 10a and 10b are, at least on the surface, logically equivalent. Again taking the sentences in 1 as an example, if the number of Americans who have broadband internet access is greater than the number who do not (per 10a), then it is also the case that the number who have broadband is greater than half the total number of Americans (per 10b), and vice versa. Nonetheless, Hackl shows experimentally that the difference in form between 10a and 10b impacts sentence processing, an effect he attributes to their giving rise to two distinct verification procedures. Sentences with *most* are preferentially verified via a ‘vote-counting’ procedure: for each A that is B, determine whether there is at least one A that is not B; if not, the sentence is true. More than half, by contrast, triggers a procedure involving totaling the number of A that are B, and comparing that number to half the total number of A. Hackl shows that in a task that favors the vote-counting procedure, subjects are quicker when the quantifier presented is *most* than when it is *more than half*.

I would like to suggest that this difference in processing represents only the tip of the iceberg, so to speak, in the consequences arising from the difference in logical form. The central claim I argue for here is that while both of the logical forms in 10 are based on a measure function μ_S, they differ in the allowable structure of the scale that serves as the range of this function, a difference that corresponds to that between the two weighing procedures described at the start of this article. The divergent behavior of *most* and *more than half* discussed in the previous section will be shown to derive from this.

To develop this idea further, it is necessary to look in more depth at what scales are, and how they differ in their structures. I turn to this now.

2.2. Scale structure and measurement theory. Following work by Bartsch and Vennemann (1973), Cresswell (1977), Bierwisch (1989), Kennedy (1997), Hackl (2000), Heim (2000), and others, I adopt a degree-based semantic framework, in which the ontology is extended to include degrees as a basic type (type d). Degrees are organized into scales. As a first approximation (to be refined below), a scale S can be conceptualized as a structure of the following form.

(11) $S = \langle D, >, DIM \rangle$, where

- D is a set of degrees,
- $>$ is an ordering relation on that set, and
- DIM is a dimension of measurement.

Here a dimension DIM is a property that an entity can have more or less of, or equivalently, a property on which two entities can be compared. Examples of dimensions that are relevant to the study of quantification include weight, volume, area, and of course number of elements as applied to sets.

3 In §4 we will see an alternative possible analysis.
On the definition of a scale embodied in 11, a single dimension DIM can potentially be associated with multiple scales, which differ in the composition of the set of degrees D and/or the properties of the ordering relation >. A framework in which this possible variation can be characterized is provided by the field of measurement theory, the branch of applied mathematics concerned with the numerical representation of properties of and relationships between entities (see Kranz et al. 1971, Roberts 1985 for basic introductions to measurement theory, and Krifka 1989, Klein 1991, Nerbonne 1995, Bale 2008, Sassoon 2010, Lassiter 2011, van Rooij 2011b for linguistic applications).

Since Stevens 1957, it is common in measurement theory to distinguish several levels of measurement, ranging from weaker to stronger. An ordinal scale represents a simple rank ordering, with no notion of distance between scale points. A standard example of such a scale is the placement of runners finishing a race (first, second, third, etc.), another is the geological time scale, which relates events in the earth’s history to the era, period, epoch, or age in which they occur. In an interval scale, the distance between scale points is meaningful: equal intervals on the scale correspond to equal increments in the property measured. Classic examples of interval scales include temperature measured in Celsius or Fahrenheit and time measured relative to the Gregorian calendar. Finally, a ratio scale adds a nonarbitrary zero point. Examples of physical measures based on ratio scales include height in centimeters, weight in grams, and temperature on the Kelvin scale.

Scales that are higher in this hierarchy support a wider range of comparative statements, and in that sense can be considered stronger or more informative. Ordinal scales support comparisons of measures (e.g. Runner A finished the race before runner B; The Jurassic period followed the Triassic period), but nothing further. Interval scales allow these as well as statements of magnitude of differences (e.g. Today is three degrees warmer than yesterday). Finally, ratio scales also allow comparisons of ratios of measures (e.g. This rock is twice as heavy as that rock).

As is well known, an ordinal scale can be constructed from a simple qualitative ordering on individuals (see e.g. Kranz et al. 1971, Cresswell 1977, Klein 1991, Bale 2008). As one way to do this, we begin with some set of entities A and a binary comparison relation R between them that satisfies the properties of a strict weak order. Examples of such relations include ‘weighs more than’ (applied to physical objects), ‘finished the race before’ (applied to the participating runners), and ‘has more elements than’ (applied to some set of sets). The equivalence classes under this relation become the degrees of the scale (where a and b are equivalent under R iff for all c, $R(a,c)$ iff $R(b,c)$, and $R(c,a)$ iff $R(c,b)$). A relation between degrees is then derived from the relation between individuals as follows: for equivalence classes (i.e. degrees) \tilde{a} and \tilde{b} containing individuals a and b, respectively, $\tilde{a} \succ \tilde{b}$ iff $R(a,b)$. Derived in this way, the \succ relation satisfies the properties of a strict linear order, and as such the resulting scale consists of a linearly ordered set of degrees; this is another way to characterize an ordinal scale. The second of the two weighing procedures discussed at the start of this article—the one based on the balance—

4 A strict weak order is a binary relation (A, R) that is the following.

(i) IRREFLEXIVE: For all $a \in A$, it is not the case that aRa.

(ii) ASYMMETRIC: $a, b \in A$, if aRb then it is not the case that bRa.

(iii) TRANSITIVE: For all $a, b, c \in A$, aRb and bRc ⇒ aRc.

(iv) TRANSITIVE WITH REGARD TO INCOMPARABILITY: For all $a, b, c \in A$, if a is incomparable with b and b is incomparable with c, then a is incomparable with c.

5 A strict linear order is a binary relation (A, R) that is asymmetric, transitive, and complete.

(i) COMPLETE: For all $a \neq b \in A$, aRb or bRa.

would serve as the basis for creating a scale of this sort. As noted earlier, such a scale can be given a numerical representation by associating its degrees with numbers in an order-preserving way, but the values assigned in this way have no meaning beyond their representation of the original ‘greater than’ relation R.

By contrast, a qualitative ordering is not sufficient to serve as the basis for a ratio scale. For this, it is necessary also to define a concatenation operation on elements of the domain of the relation R, and a corresponding operation of addition on degrees of the scale, such that the following holds.

\[(12) \mu_S(a \oplus b) = \mu_S(a) + \mu_S(b)\]

To take the dimension of weight as an example, the concatenation of two objects corresponds to placing them together; the weight of two objects placed together is the sum of their individual weights. A scale where this property holds can be given a numerical representation by selecting a standard object to form the basis for a unit of measure; in the case of weight, for example, this might be some object fixed as the standard for a gram. In contrast to the case with an ordinal scale, the numerical measures assigned in this way convey something beyond position in an ordering. For example, an object of weight 100 grams can meaningfully be said to be twice as heavy as one of weight 50 grams, because the first is equivalent to the concatenation of 100 exact copies of the standard object, and the second to 50 such copies. The first of the two weighing procedures described in §1 assumes a scale of this nature.

To relate this discussion to the earlier definition of a scale in a degree-based semantic framework (11), we can now distinguish two separate types of scales underlying linguistic meaning.\(^6\)

\[(13)\] For a set A and a binary ordering relation R on A:

a. An **ordinal** scale is a structure $S = (D, >, DIM)$, where

- $>$ is a strict linear order on D
- $\forall a, b \in A, aRb \iff \mu_S(a) > \mu_S(b)$

b. A **ratio** scale is a structure $S = (D, \oplus, >, +, DIM)$, where

- \oplus is a strict linear order on D
- $\forall a, b \in A, aRb \iff \mu_S(a) > \mu_S(b)$
- $\forall a, b \in A, \mu_S(a \oplus b) = \mu_S(a) + \mu_S(b)$

A number of authors have demonstrated that concepts from measurement theory are relevant to natural language (Krifka 1989, Klein 1991, Nerbonne 1995, van Rooij 2011b, among others). Recently, Sassoon (2007, 2010) has argued that contrasts in the occurrence of measure phrases (e.g. three feet tall vs. fifty degrees warm) and modifiers such as twice (e.g. twice as tall vs. ?twice as short) can be related to the level of measurement assumed by the adjective: positive adjectives such as tall are associated with ratio scales, while those such as short and warm invoke only interval scales. Lassiter (2011) similarly shows that differences in level of measurement can account for differences in the behavior of epistemic vs. deontic modals. In what follows I argue that these distinctions are relevant to quantification as well.

2.3. Back to quantification. With the preceding discussion in mind, let us return to the quantifiers most and more than half. It should now be apparent that there is in fact a crucial difference between the two logical forms in 10, namely, that they place different requirements on the structure of the underlying scales that provide their interpreta-

\(^6\) Here I leave aside interval scales, which are not relevant to the present analysis.
tion. That for most in 10a needs only an ordinal scale, in that it is based simply on a ‘greater than’ relation between measures. But that for more than half in 10b requires a stronger scale that allows statements about ratios of measures, that is, a ratio scale.

On the surface, this might seem to be a moot point, in that the typical dimensions involved in quantification can be measured at the ratio level. This is particularly the case for the dimension of number as applied to set sizes: measuring set size via counting is in Stevens’s framework an example of ratio-level measurement.7

But a dimension where ratio-level measurement is possible can also be measured at a less informative level. Take again the example of a race. Runners’ finishing times can be measured in minutes and seconds (ratio level), allowing us to say things like Runner A took twice as long to finish as runner B. But as noted above, we can also simply associate each runner with his finish order. Relative to this less informative level of measurement, a statement like this no longer makes sense; we can only make statements such as Runner A finished after runner B. The rock-weighing example discussed at the start of the article similarly illustrates that weights of objects could likewise be measured at either the ratio or ordinal level. By the same token, the number of students in each of a set of university classes could be measured by counting (ratio level), but we could also simply rank the classes by number of students and represent this ordering by assigning them the numbers 1, 2, 3, …, or any other increasing sequence of numbers (ordinal).

\[
\begin{align*}
\mu_{\#}^{\text{ratio}}(\text{Class A}) &= 137 \\
\mu_{\#}^{\text{ratio}}(\text{Class B}) &= 53 \\
\mu_{\#}^{\text{ratio}}(\text{Class C}) &= 42 \\
\mu_{\#}^{\text{ratio}}(\text{Class D}) &= 11
\end{align*}
\]

\[
\begin{align*}
\mu_{\#}^{\text{ordinal}}(\text{Class A}) &= 4 \\
\mu_{\#}^{\text{ordinal}}(\text{Class B}) &= 3 \\
\mu_{\#}^{\text{ordinal}}(\text{Class C}) &= 2 \\
\mu_{\#}^{\text{ordinal}}(\text{Class D}) &= 1
\end{align*}
\]

The claim I would like to make is that there are cases where ratio-level measurement is not possible and only weaker scale structures are available, and that it is in precisely these cases that quantification with most is possible, while quantification with more than half is not. The previously discussed pairs in 6–9 illustrate different sorts of situations where this is the case. Let us examine each of these individually.

Mass nouns are a good starting place, as the crucial point is particularly easy to appreciate. There are certain mass nouns, particularly abstract ones, that correspond to dimensions for which there is no available ratio-level measurement scale. A case in point is sadness, repeated from 6 above.

(6) **Most/??more than half** of sadness diminishes over time.

There is no standard system for measuring amounts or occurrences of sadness, and no standard unit of measure. Furthermore, given its inherently experiential and subjective nature, it is difficult to imagine how a fixed increment of sadness could ever be defined to form the basis of such a unit (see Cresswell 1977 for discussion of a similar point relative to dimensions such as beauty and strength). The implication is that there is no corresponding ratio scale. Yet we nonetheless seem able to rank manifestations of sadness relative to one another, as illustrated by the following example.

7 Some authors (e.g. Roberts 1985) in fact characterize counting as involving a level of measurement higher than ratio, namely absolute level, in that, unlike the measurement of weight, for example, there is no choice of measurement unit. The point remains that set size can be assessed at least at the ratio level.
Sometimes the aftermath of the holidays can bring more sadness than the holidays themselves. That we can impose such orderings indicates that instances of sadness can be measured at the ordinal level, which is sufficient to support the logical form for most, but not that for more than half.

Some other corpus examples with most that make a similar point are in 17. How would we measure credit or interest? Again, it seems unlikely even in principle that a standard unit could be constructed. Contrast this with the sort of mass nouns that do occur with more than half, as illustrated in 18. Quantities of oil can be measured in gallons or liters, money in dollars, and territory in acres; all of these represent examples of ratio scales.

17 a. Most of the credit goes to a key provision that allows private litigants to sue in the government’s name and share in any recovery.
 (ABA Journal, 10/2006)

b. Most of the interest in the space program today comes from an older generation that remembers the romantic times of a now older space era.
 (USA Today, 7/25/2011; quoting Richard Berendzen)

18 a. China imported more than half the oil it consumed last year...
 (Chicago Sun Times, 11/25/2011)

b. The stadium will cost $ 255 million, and more than half of the money will come from the current ownership group.
 (Atlanta Journal Constitution, 12/24/1995)

c. In contrast to Turkey’s relative abundance more than half of Syrian territory gets less than 250 millimeters of rainfall per year.
 (Journal of International Affairs, Summer 1995)

A similar phenomenon is observed in the case of noun phrases that, while syntactically count, have denotations whose elements are vague and cannot be individuated in a nonarbitrary way. Consider again pastel hues in 7.

7 Most/more than half of pastel hues have a calming effect.

What counts as a pastel hue? Where does one end and the next begin? Is lavender, for example, a single hue? Or do pale lavender and dark lavender each count as separate hues? Absent a fixed set of atoms, it is not possible to assign a precise cardinality to this set, or to any of its subsets. But it still may be possible to compare the numerosities of two subsets (e.g. those that do and do not have a calming effect). For example, it might be judged that a ‘greater than’ relation holds between two subsets if it holds on all plausible individuations of those subsets. This again could be represented on an ordinal scale, supporting the use of most.

The following examples represent further illustrations of this phenomenon.

19 a. With the technology that is available today, most issues around accessibility in the workplace are solvable.
 (San Francisco Chronicle, 7/17/1999)

b. Successful people know that most tasks are much more difficult than they seem.
 (Town and Country, July 1998)

c. As with most things in life, quality costs money.
 (Accent on Living, Spring 1995)

d. In most parts of the country, a westerly wind predominates …
 (Outdoor Life, Sept. 1997)
What, for example, constitutes a single issue around accessibility in the workplace? How should the entire space of issues of this sort be chopped up into discrete entities? Similarly, what are the tasks whose difficulty is discussed in 19b? It is hard to see how an exhaustive list could be compiled in any nonarbitrary way. Observe that, again, typical instances involve abstract nouns such as issues, tasks, things in life. But we also see this effect with concrete noun phrases where atomicity fails to hold, as in 19d: a part of a part of the country is also a part of the country. In all of these cases, my intuition is that replacing most with more than half would result in infelicity, unless (and this is crucial) we are able to assume some preestablished list of issues, tasks, parts of the country, and so forth over which to quantify. In support of this point, observe the contrast between the original example in 7 and the following naturally occurring example, whose felicity rests on the master swatch providing a fixed individuation of the color space.

(20) I was looking at their master swatch of colors and soon realized that more than half of the colors are not available on the little swatches to bring home.9

A somewhat different sort of issue is represented by examples such as 9, which, as noted earlier, is acceptable with both most and more than half, but with a difference in interpretation.

(9) She noted lights on in most/more than half of the houses she passed …

Here, the issue is not the structure of the domain of quantification but rather the knowledge state of the speaker. Specifically, the speaker might know it to be the case that one set or entity ranks above another on the relevant dimension—here, that there were more houses with their lights on than those with their lights off—without ever knowing the exact measure of either one. For instance, in this case she might have noted that for every house passed with the lights off, there were several with the lights on (this is essentially Hackl’s vote-counting procedure). Extending the terminology somewhat, we might call this ‘ordinal-level knowledge’, that is, knowledge as to position on an ordinal-level scale. This is sufficient to support the use of most in an example such as 9; but use of the more than half version requires a higher level of knowledge, specifically measure relative to a ratio-level scale, such as would be obtained by actually counting.

Something similar is observed in examples such as 8, repeated here, where the quantifier combines with a bare plural noun phrase.

(8) Most/??more than half of teens want to fit in with their peers.

Teens—like other sorts of humans—are eminently countable sorts of entities, but the plural noun teens here does not seem to refer to any particular set of teens. Rather, it is teens in general, or perhaps even teens as a kind, whose behavior is characterized. It is in this context that replacing most with more than half results in infelicity. A similar example is 21.

(21) a. Now most people don’t know how a lock works, not even local farmers.
(NPR Morning, 9/3/2001)

b. ?Now more than half of people don’t know how a lock works, not even local farmers.

Intuitively, the lack of specificity in the denotations of teens and people in examples such as these serves to preclude precise counting of set members, the prerequisite for occurrence with more than half. But as in the earlier cases, it may nonetheless be possible to order subsets of these sets relative to each other, allowing the occurrence of most.

The previous examples can be contrasted with those, such as the following, in which *more than half* occurs felicitously with the noun *teens*.

(22) a. The study found that *more than half* the teens surveyed admitted to dangerous driving habits.

 (Atlanta Journal Constitution, 5/13/2007)

 b. *More than half* of teens surveyed said they are ‘not too careful or not at all careful’ to protect their skin.

 (Today’s Parent, July 2006)

The definite description *the teens surveyed* in 22a denotes a particular set of teens, localized in space and time, namely, those who took part in a certain study. A similar effect obtains in 22b, despite the absence of an overt definite form. In either case, this specificity of reference gives rise to the possibility of precise counting.

Similarly to what was seen for 9, the contrasts in felicity observed in 8 and 21 can be related to the speaker’s knowledge of the cardinality of the relevant sets. But 8 and 21 exemplify a further issue that is not present in 9. Namely, the denotations of *teens* and *people* are inherently so underspecified that it seems impossible even in principle for a speaker to be in a state of ratio-level knowledge relative to their cardinalities.

The plural noun in 8 has an interpretation seemingly similar to that of bare plurals in generic sentences (e.g. *Teens (usually/mostly) want to fit in with their peers*). That in 22b is closer to specific plural indefinites, whose interpretations have a referential flavor (Fodor & Sag 1982, Reinhart 1997). A classic example is 23a, which on its most salient reading entails that there is some specific set of three relatives whose collective deaths will make me rich. Other relevant parallels include the anomalous plurals that can take wide scope over operators, as in 23b (Carlson 1977), which has a reading where *parts of that machine* scopes over the negation, and Condoravdi’s (1994) functional reading, as in 23c, where *students* picks out the totality of relevant students. In each of these cases, like those in 22, the plural noun phrase identifies a particular spatiotemporally bounded set of individuals.

(23) a. If *three relatives of mine* die, I’ll inherit a million dollars.

 b. John didn’t see *parts of that machine*.

 c. In 1985 there was a ghost haunting the campus. *Students* were aware of the danger.

In what follows, I refer to the interpretation of the plural *teens surveyed* in 22b as the ‘particular’ interpretation, in contrast to the ‘kind’ reading of unmodified *teens* in 8. The claim here is that ratio-level measurement such as precise counting is possible only in the case of definite noun phrases or indefinites with a particular interpretation, which introduce into the logical form a well-delineated set of entities. Such measurement is not possible for indefinites with a kind interpretation, whose denotations are simply too underspecified. I return to this issue in §4, where I outline a possible formalization of the intuitive notion of underspecification invoked here.

The general theme running through the discussion of all of these examples is that a relation of ‘greater than’ between two sets or entities can be semantically represented, without it being the case that the precise cardinality or measure of either is represented. In the context of degree semantics this is a rather unusual idea, but there is a very close parallel from the field of cognitive psychology, specifically the branch concerned with number cognition. In fact, findings from that perspective suggest that such representations are the default option. I turn to this now.

2.4. Tolerant comparison and semiordered scales. Underlying the above-described procedure for the derivation of ordinal scales is the assumption that the ordering relation between individuals is fully transitive. But there is ample evidence that
real-life comparison does not work this way. Specifically, while the ‘greater than’ relation may be transitive, ‘not greater than’ often is not.

Research in psychophysics has shown that across a wide range of perceptual properties, humans’ ability to differentiate two stimuli—for example, to determine which of two weights is heavier—is subject to a threshold of discriminability known as the ‘just noticeable difference’ (JND), which can typically be expressed as a ratio of the objective measures of the stimuli being compared (Stevens 1975). Two stimuli whose objective measures fall within the relevant threshold are not reliably distinguishable. Luce (1956) points out a similar pattern in preference between options; for example, one might prefer a cup of coffee with one spoonful of sugar to one with four spoonfuls of sugar, but have no preference between a cup with one spoonful plus n grains of sugar and one with one spoonful plus $n+1$ grains. In both cases, the comparison operation exhibits what might be termed tolerance, in that it is insensitive to small differences between entities. It is easy to see that a consequence of this is the intransitivity of perceived sameness or indifference.

A particularly well-studied instance of tolerant comparison involves the perception of the numerosity of sets of objects. A large body of research supports the existence of two separate cognitive systems for the representation and processing of quantity (see especially Dehaene 1997, Gallistel & Gelman 2000, Feigenson et al. 2004). The first and most familiar, which could be termed the ‘precise number system’, allows the representation of exact number and is involved in calculations such as addition, subtraction, multiplication, and division using symbolic notation. When you solve a mathematical problem such as $327 \times 809 = ?$, for example, you are using this precise number system. The representation and processing of exact number is closely linked to linguistic ability; these capabilities are present primarily in verbal humans and may be lost in patients with aphasia. But in addition to this capacity to represent precise quantity, humans also possess a second system, which has been termed the ‘approximate number system’ (ANS), which allows us to represent and reason with quantities approximately. This system is essentially analog in nature, with (approximate) quantities thought to be encoded as patterns of activation on the equivalent of a ‘mental number line’. These representations can serve as the basis for comparison of quantities and for simple approximate arithmetic such as addition and subtraction.

The hallmark of the ANS is its ratio dependence (see Dehaene 1997 and references therein). When subjects are asked to identify the larger of two quantities—say, two arrays of dots—in a task where time constraints preclude exact counting, response times decrease and accuracy improves as the numerical distance between the two values increases (distance effect). Similarly, for a given numerical distance between two quantities, response times decrease and accuracy improves as the magnitude of the numbers themselves decreases (size effect). Both of these effects are accounted for by the Weber-Fechner law, which states that the differentiability of two stimuli is a function of the ratio of their measures. Simply stated, two pairs of values with comparable ratios (e.g. 12 vs. 6 and 120 vs. 60) are equally differentiable, and two values whose ratio is sufficiently close to one are not differentiable via the ANS, or perhaps more accurately, are only differentiable in a noisy and stochastic way. For adults in literate societies, the minimum ratio required for reliable differentiation has been estimated at between 7 : 8 and 10 : 11 (Pica et al. 2004, Halberda & Feigenson 2008).

The ANS is developmentally and evolutionarily more basic than the ability to represent precise numerosity. It is operational not just in adults who possess a system of number words, but also in preverbal infants, who have been shown to exhibit approxi-
mate numerical abilities (Xu & Spelke 2000). Likewise, members of societies without complex number systems have been found to perform successfully on tasks involving approximate quantity comparison and arithmetic, but not those involving precise operations (Pica et al. 2004). The approximate system may be preserved in aphasics who have lost the ability to perform exact mathematical operations (Dehaene & Cohen 1991). Nonhuman animals, too, show similar approximate numerical abilities (Dehaene et al. 1998). Furthermore, in verbal/numerate adults, the role of the approximate number system is not superseded by the possession of learned, precise numerical abilities. Even on tasks involving quantities presented symbolically, such as judging which of two values represented in Arabic numerals is larger, size and distance effects are still observed, indicating that even in this case the ANS is engaged (Buckley & Gillman 1974).

To return to the semantics of quantity and amount, scales have been argued to arise out of our ability to make comparisons (see e.g. Bierwisch 1989). The above-described threshold-sensitive patterns of differentiability and preference are not faithfully represented by a scale in which the ordering on degrees is complete, that is, in which for any two distinct degrees \(d \) and \(d' \), either \(d \succ d' \) or \(d' \succ d \). Completeness follows from the assumption that scales are derived from strict weak orders on individuals and is taken for granted in most current degree-based work in semantics; however, it is not inherent to the definition of a scale in 11. Cresswell (1977), in what is often considered to be the foundational work in degree semantics, leaves open the possibility that scales may be based on a weaker ordering relation, and it is this possibility that I pursue here.

There are two recent proposals in the literature for the application of tolerant orderings to account for facts in the adjectival domain, and these suggest two possibilities for how a degree-semantic framework can be extended to include a scale type that represents threshold-sensitive comparison. Van Rooij (2011a,c) proposes the use of semiorders, ordering relations originally introduced by Luce (1956) to account for intransitivity of indifference in preference. Building on this, we can posit a scale in which the ordering relation \(\succ \) has the properties of a semiorder. In 24 I give a formal definition of a semiorder, and in 25 that of a semiordered scale based on this sort of ordering.

(24) A structure \(\langle A, \succ, \sim \rangle \) is a semiorder iff \(\forall a, b, c, d \in A \)
- a. Exactly one of \(a \succ b \), \(b \succ a \), and \(a \sim b \) holds
- b. \(a \sim a \)
- c. \((a \succ b \land b \sim c \land c \succ d) \rightarrow a \succ d \)
- d. \((a \succ b \land b \succ c \land b \sim d) \rightarrow \neg(a \sim d \land c \sim d) \)

(25) For a set \(A \) and a binary ordering relation \(R \) on \(A \), a semiordered scale is a structure \(S = \langle D, \succ, \sim, \text{DIM} \rangle \), where
- \(\succ \), \(\sim \) is a semiorder on \(D \)
- \(\forall a, b \in A, aRb \iff \mu_S(a) \succ \mu_S(b) \)

The definitions in 24 and 25 have as a consequence that \(\succ \) is transitive but \(\sim \) is not, such that we may have three degrees \(d, d', \) and \(d'' \) for which \(d \sim d' \) and \(d' \sim d'' \) but \(d'' \succ d \). Thus a semiordered scale is one in which the ordering relation \(\succ \) exhibits tolerance of the sort discussed above.

By way of concrete example, a particular case of a semiordered scale is one in which degrees are conceptualized not as points but rather as scalar intervals whose lengths are a function of their magnitudes, with the ‘greater than’ relation obtaining between degrees (i.e. intervals) if and only if one exceeds the other without overlap.

(26) a. \(D = \{ I : \exists n \in \mathbb{R} \text{ such that } I = n \pm k \cdot n \} \) for some fixed \(k, 0 \leq k < 1 \)
- b. \(I \succ I' \) iff \(\forall n \in I \text{ and } n' \in I', n > n' \)
The scale in 25 can be seen as a weaker counterpart to an ordinal scale: whereas an ordinal scale encodes all differences between individuals on the relevant dimension, a semiordered scale encodes only significant differences.\(^{10}\) In parallel to the move from ordinal to ratio scales, we might wish to strengthen this structure by augmenting it with an addition operation. Importantly, a condition of additivity with respect to concatenation of the sort characterizing the ratio scale (13b) cannot be defined on a semiordered scale, for the simple reason that exact equality is not defined for such a scale. But something similar can be achieved via a condition based on the similarity relation \(\sim\).

(27) For a set \(A\) and a binary ordering relation \(R\) on \(A\), a \textbf{semiordered scale with approximate addition} is a structure \(S = \langle D, \oplus, >, \sim, +, DIM \rangle\), where

- \(\sim\) is a semiorder on \(D\)
- \(\forall a, b \in A, aRb\) if \(\mu_S(a) > \mu_S(b)\)
- \(\forall a, b \in A, \mu_S(a \oplus b) \sim \mu_S(a) + \mu_S(b)\)

The structure in 27 can be considered a weaker counterpart of a ratio scale; it will be seen below that the difference vs. a true ratio scale has an important consequence.

In an approach that is related to but distinct from van Rooij’s, Fults (2011) argues for a more direct connection between the approximate number system and the semantics of degree, positing the existence of so-called \textbf{analog magnitude scales}, which involve the mapping of individuals to mental magnitudes that are the output of the ANS. Mental magnitudes themselves can be thought of as noisy representations of quantities. Following work in the psychology of number cognition, they may be modeled as Gaussian distributions over a continuous spectrum (Feigenson et al. 2004), whose standard deviations increase in proportion to their magnitudes. Degrees of this sort might be depicted as follows.

(28)

The discriminability of two analog magnitudes can be understood as a function of the extent of overlap of their curves: two such degrees with little or no overlap will be judged to stand in a ‘greater than’ relationship to one another, while two whose curves overlap substantially are not reliably discriminable. If the ordering relation \(>\) between degrees-as-analog-magnitudes is defined on the basis of some threshold of nonoverlap, then the structure of the scale reduces to that of the interval-based scale in 26. Thus an analog magnitude scale is itself a type of semiordered scale.\(^{11}\)

Importantly, the scale depicted in 28, like that in 26, has a property that is not guaranteed by the definition in 25, namely \textbf{ratio dependence}, meaning that the threshold required for a difference between two degrees increases in proportion to their magnitude. Given that ratio dependence is a characteristic feature of ‘real world’ tolerant comparison, this is a significant point. Unfortunately, there is not to my knowledge an established way to axiomatize a scale with this property, as was done above for ordinal, ratio,

\(^{10}\) I thank a referee for suggesting this characterization of the difference between scale types.

\(^{11}\) A connection can also be drawn between semiordered scales and the coarse-granularity scales proposed by Krifka (2009) to account for the approximate interpretation of round numbers, where degrees likewise are conceptualized as intervals or distributions over a continuous scale. Krifka does not, however, discuss the potentially semiordered nature of such structures.
and semiordered scales (cf. Fults 2011 for a similar point and a preliminary attempt at an appropriate characterization). On this approach to a tolerant scale structure it thus seems necessary to regard this property as a cognitive primitive, reflecting the basic ratio-dependent character of our innate ability to perform comparisons of various sorts.

The above discussion has illustrated two possibilities for how tolerant, threshold-sensitive comparison might be modeled in a degree-based semantic framework. Whichever of the two options we pursue, introducing a scale structure of this sort represents an important extension of the degree ontology, one that is directly relevant to the topic of the present article, because it helps to explain a puzzling aspect of the interpretation of *most.*

Recall the observation in §1 that the use of *most* typically implies a proportion significantly greater than 50%. This can now be accounted for as evaluation of the logical form in (10a) relative to a scale with a semiordered structure as in (25) or (28). If the cardinality of $A \cap B$ exceeds that of $A - B$ by some threshold value—which is what obtains if $>$ encodes tolerant comparison—then it is also necessarily the case that the proportion of A that are B exceeds 50% by some corresponding threshold. The described interpretive pattern follows.

The connection between *most* and threshold-sensitive comparison has previously been made by Pietroski and colleagues (2009) and Lidz and colleagues (2011), who provide evidence that the approximate number system plays a role in the on-line processing of sentences with *most.* In a series of experiments, these authors demonstrate that verification of a sentence of the form *Most of the dots are yellow* exhibits size and distance effects that can be characterized by the Weber-Fechner law.

Halberda and colleagues (2008) show further that young children who do not yet exhibit knowledge of exact number are nonetheless able to evaluate *most* sentences, but only when the difference between set sizes is sufficiently large, suggesting that they are using their approximate numerical abilities to do so. My claims above amount to taking this a step further. Not only is the ANS involved in the on-line processing of *most* sentences, but something related finds its way into the semantics, in the form of a scale that itself encodes tolerance as a property of the ordering relation $>$. Most does not just allow a ‘significantly greater than half’ interpretation, but strongly favors it, being—as noted above—infelicitous for proportions very close to 50%. This suggests that interpretation relative to a semiordered scale is not just an option, but actually the default for *most.* I believe that this can be accounted for on pragmatic grounds. In his well-known typology of implicature types, Horn (1984) introduces the class of R-based implicatures, in which a more general predicate is pragmatically restricted or narrowed to stereotypical instances. R-based implicatures derive from the R principle ‘say no more than you must’. They are characterized by their strengthening effect, which distinguishes them from the better-known class of Q-based or scalar implicatures, where the speaker’s use of a scalar term implicates that he or she is not in the position to use a stronger scalemate. Examples of R-based implicature discussed by Horn include the strengthening of ability modals (such that *John was able to solve the problem* R-implicates that he in fact solved it); the restriction of lexical causatives such as *kill* to cases of direct causation; and the phenomenon of conditional perfection, where a conditional *if* statement is strengthened to a biconditional *iff* interpretation (Horn 2000). Horn notes that R-based implicatures may be conventionalized, leading to semantic change, an example being the narrowing in meaning of the Old English *dēor* ‘deer’ from beasts in general to a particularly salient kind of hunted animal.
Recall the above-cited evidence that approximate representation of numerosities is more basic than precise representation, and that our approximate numerical abilities are activated by default even in tasks involving quantities represented precisely in symbolic notation. The cognitive primacy of approximate comparison makes interpretation relative to a semiordered scale structure a very plausible candidate for the stereotypical interpretation of a most sentence. The ‘significantly greater than half’ aspect of most’s meaning can thus be aligned to other cases of R-based implicatures, in that it involves the strengthening of a basic lexical meaning to a salient or typical instance. It seems possible that for at least some speakers this strengthening has become conventionalized, and is thus the only one available for most.

Importantly, while the logical form for most can be evaluated relative to a semi-ordered scale structure, that for more than half cannot. A scale of the sort in 25 or 28 is weaker than ratio level (in fact weaker than ordinal level) and thus does not support 10b. Furthermore, even if the scale is augmented with an approximate addition operation, as in 27, it is still not a true ratio scale. To see this simply, suppose we chose some entity a as the basis for a unit of measure. As a consequence of the definition of addition in terms of the intransitive indistinguishability relation ~, it is possible that for some x, \(\mu_S(x) \sim \mu_S(n \cdot a) \sim \mu_S(m \cdot a) \) for \(m \neq n \) (where \(n \cdot a \) is shorthand for the concatenation of \(n \) exact replicas of a). Since there is no guarantee that the measure of a given entity can be uniquely stated in terms of multiples of a given standard unit, it follows that ratios of measures are undefined, and thus the logical form of more than half is unsupported. Absent the possibility of interpretation relative to a semiordered scale, we thus predict that more than half sentences will lack the ‘significantly more than’ implication that characterizes most sentences, and this is exactly what is observed in pairs such as 4.

There have been previous proposals to account for the tendency for most to be interpreted as ‘significantly more than half’, either by building this meaning into the semantics itself (Peterson 1979, Westerståhl 1985) or by invoking pragmatic principles (Horn 2005). To my knowledge, the present analysis is the only one to relate this aspect of most’s behavior to other seemingly unrelated patterns in its distribution and interpretation, all of which can be traced back to a common underlying factor, the structure of the measurement scales that give it content.

2.5. Summary and predictions. The central idea developed in this section is that the puzzle posed by most and more than half can be explained in terms of scale structure. Their logical forms are superficially equivalent, hence the initial intuition that their meanings are essentially identical. But they place different requirements on the structure of the scales that underlie their interpretation, a difference that has a range of consequences. The lexical entry for more than half in 10b assumes a ratio scale, in that it expresses the ratio of two measures; that is, more than half presupposes measurement at the ratio level. There is nothing terribly surprising about this, in that counting as well as typical measures of mass, volume, and so forth represent classic examples of ratio-level measurement. What is important is that in the case of most in 10a, a ratio scale is not required. Rather, a simple ordering of entities will suffice, one that can be represented via an ordinal scale. That is, the logical form of most need only assume an underlying qualitative ordering, without building in notions of distances or ratios between scale points. And even a weaker scale structure, one in which the degrees are only semiordered relative to one another, is also sufficient.

This proposal has been seen to yield insight into a range of examples discussed up to this point. But if this is the right characterization of the facts, we expect differences in
the distribution and interpretation of most and more than half to be detectable more broadly. In particular, we predict the following:

(i) The distribution of most will be broader than that of more than half, in that the latter but not the former will be restricted to contexts where ratio-level measurement is possible. Specifically, more than half will occur exclusively with noun phrases that
 • are definite in form, or if indefinite have a ‘particular’ rather than ‘kind’ interpretation, and
 • have extensions whose structures allow ratio-level measurement. For count nouns, this reduces to having a nonarbitrary set of atoms. For mass nouns, the clearest diagnostic is the existence of a standard unit of measure for the dimension in question, or the judgment that such a measure could be created.12

(ii) More than half, whose interpretation is based on counting or other ratio-level measurement, will tend to be used by speakers/writers who have such measurement data available to them. This will not be observed to the same extent with most.

(iii) As a consequence of the preference toward interpretation relative to a semi-ordered scale, most will tend to be used to convey proportions significantly greater than 50%, and correspondingly will be used for higher proportions than more than half, for which interpretation relative to such a scale is not a possibility.

In the next section, a corpus study is presented in which these predictions are tested.

3. Corpus analysis.

3.1. Data source and sampling. Data for the analysis were drawn from the Corpus of Contemporary American English (COCA; Davies 2008–), a 520-million-word corpus of American English, including approximately 20 million words per year for the years 1990–2015. For each year included, the corpus is evenly divided between five genres: spoken language, fiction, popular magazines, newspapers, and academic texts. Searches can be carried out by word, phrase, lemma, and part of speech, the latter made possible via automated tagging according to the UCREL CLAWS7 tagset.13 For each entry, a context consisting of the ten to fifteen words preceding and following the searched term is available for downloading; an expanded context is available online.

As of 2014 when data for this study were extracted, there were 502,255 occurrences of most and 5,730 occurrences of more than half in COCA. However, not all of these involve the quantificational use that is the focus of the present article. A significant proportion of most tokens involve its use in adjectival and adverbial superlatives (29a). Also represented is the so-called relative superlative the most (29b) (which could be paraphrased as ‘the largest number of’), as well as fixed expressions such as at most (29c) and for the most part (29d) and a usage with a meaning of ‘almost’ (29e). Similarly, in the case of more than half we find in addition to the quantificational usage its use as an adverbial modifier (30a) and in measure expressions (30b).

12 The availability of a ratio-level scale does not entail the existence of a corresponding standard measurement unit, but it is a consequence of the additive structure of ratio scales that such a unit could be developed, making this a meaningful diagnostic. I thank a referee for pointing out the need to clarify this point.

13 CLAWS stands for Constituent Likelihood Automatic Word-tagging System, an automated part-of-speech tagger developed by the University Centre for Computer Corpus Research on Language (UCREL) at Lancaster University.
(29) a. Gill’s compilation of apprenticeship records is one of the best and **most accessible** sources for research into eighteenth-century Virginia craftsmen.
 (Magazine Antiques, May 1998)

b. The squad with **the most** points at the end of the week wins a trophy ...
 (Denver Post, 9/23/2001)

c. Common black paint absorbs, **at most**, 90 percent of the light that hits it.
 (Popular Mechanics, Feb. 2012)

d. **For the most part**, it was folks from the other side of the tracks who were hardest hit.
 (NPR Weekly, 3/7/1998)

e. Most anything that gets broken can be fixed, and insurance covers 99.9 percent.
 (Motor Boating, Oct. 2009)

(30) a. Net private capital inflows to developing countries plummeted by **more than half** in 1996–98.
 (Foreign Affairs, Sept./Oct. 2001)

b. That particular model is about fifteen centimeters long and **a bit more than half a centimeter** thick.
 (Analog Science Fiction & Fact, Oct. 2007)

To address this, samples of the quantificational use of each expression were extracted for further analysis as follows. For **more than half**, COCA’s sampling feature was used to extract 200 random tokens from each of the periods 1990–1994, 1995–1999, 2000–2004, and 2005–2009, and 100 tokens from the (shorter) period 2010–2012, resulting in a raw sample of 900 tokens. This raw sample was manually cleaned by removing non-quantificational tokens, resulting in a final sample of 684 tokens. For **most**, the search was first restricted to tokens tagged as determiners (CLAWS7 tag DAT) or as ambiguous between a determiner and another part of speech, and excluded tokens preceded by **the** (to rule out the relative superlative use); this yielded 235,035 occurrences in total. From here, a raw sample of 900 tokens was extracted as described above, and then further manually cleaned, yielding a final sample of 762 tokens. Note that this procedure for **most** leaves open the possibility that some quantificational tokens were missed because they were incorrectly tagged with a tag other than DAT. To assess the magnitude of this issue, a sample of tokens receiving other tags was extracted and manually searched for instances of the quantificational use. Based on this analysis, an estimate was derived that less than 1% of quantificational tokens were falsely excluded via the extraction procedure described above. This was judged to be acceptable.

In the following, a set of analyses of these data are presented, which test the predictions outlined in the preceding section.

3.2. Distribution of most and more than half. The first of the predictions discussed above was that the distribution of **most** will be broader than that of **more than half**. By virtue of its logical form, we predict **more than half** to be restricted to contexts where ratio-level measurement is possible. By contrast, **most**, whose logical form places less stringent requirements on the structure of the underlying scale, is expected to surface in a broader range of contexts. This requirement was broken down into two component predictions.

Definite/particular reference. The first requirement for the necessary level of measurement is that the noun phrase that the quantifier composes with denote a particular group or entity, bounded in space and time, rather than members of the kind in general. We saw in the preceding section that this requirement is met by definite noun phrases,14 as well as bare plurals with a ‘particular’ rather than ‘kind’ reading. As such,

14 Here and in what follows, I use ‘noun phrase’ to refer to the entirety of the nominal expression following **most/more than half**, without making any commitment to its particular syntactic status (e.g. NP vs. DP).
we predict that more than half—but not most—will be restricted to occurring with such noun phrases.

To assess this, each token in the two corpus samples was first coded for the structure of the noun phrase occurring with the quantifier. The results of this analysis are shown in Table 1 below. Examples of each structure are given in 31 and 32.

(31) a. **BARE-PLURAL**

 Most experts believe CFC-12 should be available for the next few years.
 \textit{(Consumers Research Magazine, July 1997)}

b. **BARE-MASS**

 An unproblematic local-nonlocal dichotomy is at variance with **most** current scholarship on globalization …
 \textit{(Geographical Review, July 1996)}

c. **DEFINITE**

 Most of the gun crimes in this country are caused by unregistered or stolen guns …
 \textit{(CNN Dr. Drew, 3/15/2012)}

d. **PRONOUN**

 I moved into the neighborhood and drank at the local ginmills, **most** of them long gone now.
 \textit{(A long line for dead men, by Lawrence Block, New York: Morrow, 1994)}

e. **NULL**

 When the Weigands ran their early findings by fellow archaeologists for confirmation, **most** agreed that they were onto something big.
 \textit{(Archeology, Nov./Dec. 2006)}

(32) a. **BARE-PLURAL**

 More than half of Missouri homeowners who live in the New Madrid area have earthquake insurance.
 \textit{(Archeology, Jan./Feb. 2006)}

b. **BARE-MASS**

 In 1996, for the first time in history, **more than half** of U.S. transportation oil came from overseas …
 \textit{(Environment, Sept. 2000)}

c. **DEFINITE**

 More than half of the doctoral degrees in engineering awarded by American universities each year go to foreigners.
 \textit{(Associated Press, 1/6/2007)}

d. **ALL + NOUN PHRASE**

 In states such as Massachusetts, **more than half** of all drivers are in the assigned-risk pool.
 \textit{(Consumers Research Magazine, Nov. 1991)}

e. **PRONOUN**

 Today his company has 155 members, **more than half** of whom have been in Denver for at least 10 years.
 \textit{(Denver Post, 9/28/2003)}

f. **NULL**

 The study questioned pharmacists-in-charge at the state’s 1,590 drugstores, and **more than half** answered.
 \textit{(Associated Press, 2/15/2000)}

As seen in Table 1, the greatest proportion (65%) of more than half tokens are followed by a definite description. An additional 9% of tokens are accounted for by pronouns, which have a definite interpretation, and 10% involve null-headed noun phrases.

15 This analysis collapses together examples with and without the partitive of, such as more than half the students vs. more than half of the students. The distribution of of is somewhat idiosyncratic and differs between most and more than half (e.g. most Americans but more than half of Americans), which tends to obscure the main conclusions from the comparison. As is discussed further below, I follow Matthewson (2001) in assuming that of here lacks semantic content.
which also can be interpreted definitely (for example, the null nominal in 32f corresponds to ‘the pharmacists-in-charge at the state’s 1,590 drugstores’). Only 9% of cases involve a bare plural or mass noun. By contrast, most is followed by a bare plural or mass noun in over half (55%) of the cases, while only 29% of tokens involve a definite description. A chi-square test shows the difference in distribution between the two quantifiers to be significant ($\chi^2(5) = 392.6, p < 0.0001$). Thus, as predicted, more than half skews toward occurring with definite noun phrases in a way that most does not.

An interesting sort of example in which more than half occurs involves noun phrases containing all followed by a bare plural or definite description, as in 32d. According to my intuitions, the corresponding examples without all remain grammatical, though less natural, and there is no obvious change in meaning. I return to this in the next section, where I discuss implications for the formal semantics of the relevant examples.

We are left to consider those cases where the quantifier occurs with a bare plural or mass expression, focusing on the question of whether this noun phrase can be interpreted as referring to a particular well-defined set or entity, rather than members of the kind in general. One available indicator of this in corpus data is the presence of modification, since it is known that modification, and in particular postnominal modification, facilitates such an interpretation (e.g. Fodor & Sag 1982, Matthewson 2001). Compare, for example, the previously discussed teens vs. teens surveyed; the unmodified plural noun seems to range over teens in general, while the modified expression picks out a particular well-delineated set of teens. A similar contrast is seen between experts in 31a and Missouri homeowners who live in the New Madrid area in 32a; only the latter can be interpreted as denoting a well-defined set of individuals, while the former leaves unspecified which particular experts are being considered. Thus as a further step in the analysis, all tokens featuring the quantifier followed by a bare mass or plural noun phrase (421 for most, sixty-three for more than half) were coded for the presence of modification, and particularly postnominal modification. Here again a difference between quantifiers was identified: 81% of more than half tokens but only 41% of most tokens were modified in some way ($\chi^2(1) = 30.4, p < 0.0001$). Furthermore, postnominal modification was present in 29% of more than half examples compared to 14% for most ($\chi^2(1) = 8.7, p < 0.01$). Note that the tendency for more than half to occur with modified noun phrases is also observed in the case of noun phrases of the form ‘all + bare plural/mass’ (25/37 tokens modified: 68%; 13/37 tokens with postnominal modification: 35%).

In summary, the corpus data as a whole support the claim that more than half is restricted to occurring with definite noun phrases, or with bare mass and plural terms that can be interpreted as referring to a particular group or entity. This restriction is not observed for most, which demonstrates a broader distribution.
Countability and measurability. Having a well-delineated extension is itself not sufficient for measurement at the level required to support the interpretation of more than half; in addition, the elements of that extension must lend themselves to the appropriate sort of measurement.

In the case of count nouns, what is required is an extension whose elements can, at least in principle, be individuated (separated from one another in a nonarbitrary way) and enumerated (put on an exhaustive list and counted). Earlier we saw several examples of plural noun phrases where these conditions were not fulfilled, for example, pastel hues, tasks, and issues. The intuition is that in all of these cases, quantification with more than half would be infelicitous. While it is difficult to operationally define ‘individuation and enumeration’, observe that most of the problematic cases involved abstract nouns. This leads to the overall prediction that more than half will occur less commonly than most with abstract nouns.

The corpus samples selected for analysis contained 362 tokens of more than half with a plural noun phrase, and 517 such tokens for most.16 These were broken down according to the denotation of the noun phrase; results are shown in Table 2. As seen here, the prediction is to some extent confirmed. Both quantifiers skew toward quantifying over sets of humans and other concrete objects, but the skew is somewhat greater in the case of more than half. Conversely, while both quantifiers occur with nouns denoting more readily countable sorts of abstract entities such as organizations and institutions (e.g. countries, companies, teams) and events (e.g. deaths, visits, elections), most occurs at a higher level than more than half with other sorts of abstract nouns. Again, the difference in distribution is significant ($\chi^2(5) = 19.3, p < 0.01$). Thus at this very coarse level, the corpus data support the prediction that more than half shows a greater skew than most toward more readily countable sorts of entities.

<table>
<thead>
<tr>
<th></th>
<th>most</th>
<th></th>
<th>more than half</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>CONCRETE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>241</td>
<td>46.6%</td>
<td>182</td>
<td>50.3%</td>
</tr>
<tr>
<td>Other concrete nouns</td>
<td>67</td>
<td>13.0%</td>
<td>61</td>
<td>16.9%</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizations/institutions</td>
<td>49</td>
<td>9.5%</td>
<td>32</td>
<td>8.8%</td>
</tr>
<tr>
<td>Events</td>
<td>18</td>
<td>3.5%</td>
<td>25</td>
<td>6.9%</td>
</tr>
<tr>
<td>Kinds</td>
<td>15</td>
<td>2.9%</td>
<td>3</td>
<td>0.8%</td>
</tr>
<tr>
<td>Other abstract nouns</td>
<td>127</td>
<td>24.6%</td>
<td>59</td>
<td>16.3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>517</td>
<td>100.0%</td>
<td>362</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 2. Noun phrase denotation: count nouns.

A more direct way to test the predicted difference in the sort of plural nouns the two quantifiers compose with is to determine for each given plural noun phrase whether its extension has well-defined atoms. An atom is an element of the extension of a noun phrase that has no proper subparts which are also in its extension. Teens, for example, has atoms that correspond to elements in the extension of the singular noun teen: if x is a teen, then no proper part of x is also a teen. Most count plurals behave in this way, but there are exceptions. For example, parts of the country—a plural noun phrase that occurs in the corpus sample with most—is not atomic in this sense: as noted earlier, a

16 This corresponds to the structures ‘(of) bare’, ‘(of) definite description’, ‘(of) all + noun phrase’, and ‘other’ in Table 1, and excludes tokens involving pronouns or null-headed noun phrases, even if these had a count plural as antecedent.
proper subpart of a part of the country is also a part of the country. Since precise counting is not possible in the absence of a nonarbitrary set of atoms, we expect such 'nonatomic' count plurals to occur with most but not more than half.

To assess this quantitatively, each plural noun phrase occurring with most and more than half was coded for (non)atomicity by five native-English-speaking coders who were naive to the purpose of the analysis. Prior to coding, all such tokens along with their surrounding context were placed in a single randomized list, and the identity of the quantifier itself (most or more than half) was masked. Coders were asked to indicate all items for which the noun phrase denotation lacked well-defined atoms. Examples were provided of both atomic and nonatomic noun phrases, and a test for nonatomicity was provided in the form of felicity in the frame ‘A NOUN PHRASE [singular] can be divided into two things each of which is also a NOUN PHRASE [singular]’.

In analyzing the results, those tokens were first excluded in which the noun phrase was syntactically plural, but quantification involved a dimension other than number. Examples include more than half of Medicaid costs (dimension is expense, measured in dollars) and most of your vitamin A needs (weight, measured e.g. in milligrams); such examples are not relevant to the question of atomicity. This left 512 tokens of most and 332 of more than half. Results of the coding are shown in Table 3. As seen here, atomic noun phrases predominate for both quantifiers; this is not surprising, given that atomicity is the usual case for count noun denotations. However, a difference is observed between the two. In the case of most, thirty-two noun phrases (6.3%) were coded as nonatomic by three or more of the five coders, while 398 (77.7%) were unanimously classified as atomic. By contrast, for more than half, only four (1.2%) were coded as nonatomic by three or more coders, compared to 301 (90.7%) coded unanimously as atomic. All noun phrases coded as nonatomic by three or more coders are listed in the appendix. A Fisher’s exact test reveals the difference between quantifiers to be significant \((p < 0.001)\), confirming that most is more likely than more than half to occur with plural nouns whose denotations lack stable atoms.

<table>
<thead>
<tr>
<th></th>
<th># of coders (out of 5)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>most</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.4%</td>
<td>2.3%</td>
</tr>
<tr>
<td>more than half</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Table 3. Plural count nouns judged to lack well-defined atoms.

Let us turn now to mass nouns. Here the dimension involved in quantification is not number but rather some mass dimension. We predict that more than half will occur exclusively with mass nouns whose denotations can be measured at the ratio level. As discussed above, ratio-level measurement tends to go hand in hand with the existence of a standard unit of measure, or at least the possibility that such a unit could be created. We have already seen several most examples, such as sadness and opinion, where this requirement is not met. Conversely, the felicitous examples of mass nouns with more than half have involved dimensions that do have such measures, such as oil, quantities of which can be measured in gallons or liters.

To investigate whether this pattern holds more generally, all instances of mass nouns in the corpus samples (fifty-one for most, fifty-one for more than half) were coded for the existence or possible existence of a unit of measure by five native-English-speaking
coders. As above, all tokens in their surrounding context were placed in a single random-
dized list, and the identify of the quantifier was masked. Coders were asked to pro-
vide a unit of measure if they were aware of one; if they were not aware of such a unit but
thought that one might exist or could be created, they were asked to indicate that. Exam-
ple of noun phrases with and without corresponding units were given as illustration.

Results of this coding are shown in Table 4. Again, a difference between the two quant-
ifiers is observed. For most, thirty-one tokens (60.8%) were judged by three or more
coders to lack a standard unit or possible unit; for more than half, it was only five (9.8%).
All noun phrases coded this way by three or more coders are listed in the appendix.
Again, a Fisher’s exact test shows the difference in coders’ judgments between quanti-
fiers to be significant ($p < 0.001$). Thus the analysis confirms that most is more likely than
more than half to occur with noun phrases that lack a corresponding (potential) unit of
measure, here taken as a diagnostic for the possibility of ratio-level measurement.

<table>
<thead>
<tr>
<th># OF CODERS (OUT OF 5)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>1</td>
<td>9.8%</td>
</tr>
<tr>
<td>2</td>
<td>11.8%</td>
</tr>
<tr>
<td>3</td>
<td>5.9%</td>
</tr>
<tr>
<td>4</td>
<td>3.9%</td>
</tr>
<tr>
<td>5</td>
<td>13.7%</td>
</tr>
<tr>
<td></td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Table 4. Mass nouns judged to lack measurement units/possible measurement units.

The overall prediction discussed in this subsection was that the distribution of most
would be broader than that of more than half. We have seen here that this prediction is
supported by natural language data. Most occurs frequently with bare mass/plural nouns
as well as definite noun phrases, and with expressions with a kind as well as particular
interpretation, and furthermore is not limited to noun phrases whose denotations are
countable or measurable at the ratio level. The same is not the case for more than half.
These findings are consistent with the measurement-theoretic analysis developed here.

3.3. Availability of supporting data. Above, it was suggested that the knowledge
state of the speaker may play a role in determining which quantifier may be felicitously
used. In that the semantics of more than half presupposes counting or other sort of ratio-
level measurement, we predict that it will most commonly be used by speakers/writers
who are in the state of ‘ratio-level’ knowledge, that is, who have supporting ratio-level
measurement data available to them. Such a tendency is not predicted in the case of
most, or at least not to the same extent, as its assertion can be based on weaker ‘ordinal-
level’ knowledge.

These predictions cannot be tested directly via a corpus-based methodology, since for
any given corpus token of an expression, it cannot be definitively determined what sort
of evidence the speaker/writer had on which to base his or her assertion. However,
some more indirect evidence can be brought to bear on the question.

Occurrence by corpus genre. At the coarsest level, the above prediction leads us
to expect that the occurrence of more than half will skew toward more information-
oriented genres such as newspaper and magazine articles and academic papers, where
numerical data are typically reported, and away from less informative genres such as
fiction, and that this will be observed to a greater extent than for most. This was as-
essed by breaking down the samples of most and more than half according to the five
genres represented in COCA. Results of this analysis are presented in Table 5. As seen
here, the prediction is confirmed. More than half is overrepresented in the COCA gen-

res newspaper (32% of tokens in the sample), magazine (30%), and, to a lesser extent, academic (22%), and is in particular underrepresented in fiction (4%). Recall that the full corpus is split equally among these five genres, so that this pattern in fact represents a skew in the usage of more than half, and not in the source material itself. Most is also underrepresented in fiction (10% of sample tokens) but overall shows a less extreme skew than does more than half. A chi-squared test shows the difference in distribution between the two quantifiers to be significant ($\chi^2(4) = 51.76, p < 0.0001$).

<table>
<thead>
<tr>
<th>Corpus</th>
<th>most</th>
<th>more than half</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>Spoken</td>
<td>20.6%</td>
<td>124</td>
</tr>
<tr>
<td>Fiction</td>
<td>19.5%</td>
<td>75</td>
</tr>
<tr>
<td>Magazine</td>
<td>20.6%</td>
<td>246</td>
</tr>
<tr>
<td>Newspaper</td>
<td>19.8%</td>
<td>139</td>
</tr>
<tr>
<td>Academic</td>
<td>19.6%</td>
<td>178</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.0%</td>
<td>762</td>
</tr>
</tbody>
</table>

Table 5. Distribution by corpus genre.

Numerical data and sources. A more direct way to approach this question is to examine individual tokens of most and more than half for evidence of the availability of supporting data sourced via counting or other quantitative measurement. The examples below point to what might be signs of this. While the sentences in 33 could be taken to report generalizations or the authors’ impressions, those in 34 mention specific data sources as well as numerical values.

(33) a. The pattern of life in the country and **most** suburbs usually involves long hours in the automobile each week …

(E: The Environmental Magazine 18(5), Sept./Oct. 2007)

b. **More than half** of legal education is vocabulary training that actually gets in the way of effective communication. (ABA Journal, Oct. 1995)

(34) a. **Most** of the 62 countries omitted from the UN list of 175 are small, underdeveloped countries …

(CATO Journal, Fall 1998)

b. U.S. News’s analysis of the 1992 clinic data reveals that **more than half** the 5,400 IVF babies came as part of a multiple birth.

c. Longo (Longo & Sherman, 2007) reported that **more than half** of the 47 students studied (53%) experienced horizontal violence during their educational experience.

(Creative Nursing 17, 2011)

To assess quantitatively whether most and more than half differ in this respect, each token in the two analysis samples was first coded for the presence of a numeral or number word in the immediately preceding or following context (i.e. in the context available for download from COCA). To avoid the need to make potentially arbitrary decisions as to which numerical expressions were relevant, all numerals/number words were counted, with the exception of those in names and those serving as chapter or line numbers. In total, 364 of the 684 more than half tokens (53%) cooccurred with a numeral/number word, compared to 209 of the 762 most tokens (27%); this difference is statistically significant ($\chi^2(1) = 100.2, p < 0.0001$). Second, each token was coded for the presence in the immediate context of a word indicating a data source; the words searched were analysis, data, poll, report, respondent, statistic, study, survey, and their inflected forms. While the overall occurrence of these words is low in both samples, a difference between quantifiers is again found in the predicted direction (most: 40/762
(5%), more than half: 80/684 (11%); $\chi^2(1) = 19.7, p < 0.0001$). Both of these tests support the conclusion that more than half—to a greater extent than most—is used when supported by numerical data from a particular source. This is further and more direct evidence for a difference in the knowledge state underlying the use of the two quantifiers, one that derives from the distinction in the required scale structure imposed by their logical forms.

3.4. Proportional ranges of most and more than half. The final prediction was that most will tend to be used for higher proportions than more than half, and in particular will be used infrequently with proportions very close to 50%, a consequence of a default preference for its interpretation relative to a semiordered scale.

On the surface, corpus data seem ill-suited to testing this prediction. In the majority of corpus examples involving the use of a quantifier, it is not possible to determine what the actual proportion is. However, there is one particular type of example, found quite commonly in the reporting of survey data, where a quantifier is used in conjunction with an exact percentage. Some examples of this were seen above; some further ones are the following.

(35) a. The poll also found that most Saudis, 85 percent, are very interested in seeing political reform. (CNN LiveSat, 6/19/2004)
 b. Most (73%) of the visits were in the outpatient care setting … (American Journal of Public Health, 2012)
 c. And while more than half of us grill year-round (57 percent), summer-time is overwhelmingly charcoal time. (Denver Post, 5/24/2000)
 d. More than half of all students (54.1%) mentioned confusion about gift-edness at least once. (Roeper Review, Sept. 1992)

This usage gives us precisely the sort of data we need to investigate the proportions that are described by the two quantifiers in question. As the two samples used for the previously discussed analyses did not yield sufficient examples of this sort for quantitative analysis, searches were conducted on the entire COCA corpus for occurrences of each quantifier followed within five words by the word percent. This does not pick up examples such as 35b,d featuring a percent ‘%’ sign rather than the word spelled out. This is unavoidable, since the COCA search interface does not allow searching by punctuation symbols in this configuration; but there is no reason to think that the overall pattern would have been different had these sorts of examples been included. After cleaning of irrelevant hits (other uses of percent), this yielded samples of 143 tokens for most and 58 for more than half. These were classified according to the value of the numerical percentage.

Figure 1 shows the results of this analysis. As seen here, there is a dramatic difference in the range of proportions for which the two quantifiers are used. Most occurs rarely for proportions very close to 50% (less than 10% of tokens involved a value $\leq 55\%$) and is found for values up to nearly 100%, peaking at 80–85%. The usage of more than half, by contrast, is restricted almost entirely to values less than or equal to 60%. A Fisher’s exact test shows the difference to be significant ($p < 0.0001$).

17 Five tokens of most and one of more than half occurred with a percent value below 50%. In the case of most, these appear to represent the relative superlative usage, which is more commonly spelled out as the most. The more than half example describes more than half of a previously mentioned percentage (43% as more than half of 85%).
These results confirm the stated prediction. On average, *most* is used for higher proportions than *more than half*, and in particular only a small fraction of *most* tokens occur with proportions very close to half. This is consistent with the reported intuition that *most* is infelicitous for such values, and with the claim that it is by default interpreted relative to a scale with a tolerant or semiordered structure.

There is, however, a further difference between the two quantifiers that is not predicted by the previously discussed aspects of scale structure, namely the almost complete absence of *more than half* for proportions greater than 60%.

I propose that this pattern derives from competition between *more than half* and other parallel expressions of proportion, an analysis that follows Gricean lines (Grice 1975, Horn 2005). If we are in a situation that supports an utterance of *more than half*—namely, one in which the relevant sets or entities are measurable at the ratio level—then there are a range of alternative expressions that, depending on the percentage to be conveyed, could also have been used. Examples of such alternatives include *a quarter*, *two thirds*, *8-in-10*, and so forth. By standard (neo-)Gricean reasoning, the use of *more than half* will be pragmatically restricted to cases where no stronger alternative is available. In particular, since *more than two thirds* and *more than three quarters* represent equally lexicalized but stronger alternatives to *more than half*, the felicitous use of *more than half* will be limited to cases where the proportion in question is below this, that is, to the range from half to roughly two thirds. Conversely, the hearer can infer from the speaker’s choice of *more than half* that no stronger alternative is available, and thus that the percentage falls within this range. The conclusion, then, is that the interpretation of *more than half* receives an upper bound via scalar implicature.18

An alternative possible explanation is that the interpretation of *more than half* is pragmatically upper-bounded via competition not with numerical expressions such as *two thirds*, but rather with *most*. What argues against this is that a similar pattern is ob-

18 It has been claimed that scalar implicatures do not arise with modified numerical expressions in unembedded contexts. However, Cummins and colleagues (2012) show that once scale granularity is taken into consideration, such implicatures are in fact observed for expressions such as *more than 100.*
served for other expressions of proportion beyond *more than half*. For example, all of the examples below seem to imply that the actual proportion is close to the value referenced in the quantifier. To the extent that corpus data can be used to investigate this, a similar conclusion is supported; for example, all of the percent values occurring with *less than half* in COCA fall in the range between 39% and 49%. In these cases there is no simple quantifier comparable to *most* that the numerical expression could compete with, but the pattern can be explained as competition between the expression used and another numerical expression (e.g. *less than half* competes with *less than one third*, *more than a quarter* with *more than a third*, and so forth).

(36) a. More than a quarter of us grill year round.
 b. More than two thirds of us grill year round.
 c. Less than half of us grill year round.

Yet another possibility is suggested by a referee, namely, that it is the mention of a particular threshold (half) that causes *more than half* to be restricted to proportions close to that value. A similar idea is put forth by Horn (2005). This is a valid point, but I think it is not so different from the proposal I have outlined above. *More than half* is largely restricted to values close to half because for values further away from this threshold, there are quite simply better ways to describe them. The same could be said about other proportional comparatives such as those in 36.

In contrast to *more than half*, *most* is not restricted to values close to 50%, but rather is used even for proportions approaching ‘all’. A potential reason is that it does not compete with expressions such as *more than two thirds*, and as such, upper-bounding implicatures relative to these expressions are not generated. As support, in contexts in which *more than half* is infelicitous, so too are other numerical expressions of proportion (e.g. ‘*More than two thirds of teens want to fit in with their peers*’). These expressions, like *more than half*, presuppose ratio-level measurement and are thus plausibly not alternatives to *most*. Instead, the possible competitors for *most* seem to be other quantifiers that express relationships between sets, and that are commonly organized on a Horn scale (Horn 1989, 2005), notably *all*.

3.5. Summary. In total, the corpus analysis supports the scale-based proposal developed in §2. Starting from the perspective of a degree-based semantic framework, and enriching this with insights from measurement theory and from the psychology of number and measure, we are able to develop a general account of both the similarities and differences between *most* and *more than half*.

In the following section I investigate in greater depth the interaction between noun phrase semantics and measurement, and along the way contrast the present account with an alternative, the account of Szabolcsi 1997.

4. Noun phrase denotations and measurement. In §2, I discussed at a somewhat intuitive level a difference in the sorts of noun phrases that *most* and *more than half* compose with: *more than half* is restricted to occurring with definites and bare plurals with a ‘particular’ interpretation, while *most* also occurs with bare plurals with a ‘kind’ interpretation. In this section I explore one possible way to make this more formal. In doing so, I draw on proposals by Carlson (1977), Link (1983), Chierchia (1998a,b), and others, and in particular on a theory of quantification developed by Matthewson (2001) and elaborated by Crnič (2010), which, while not entirely standard, offers the basis for a principled account of the data in question. I focus in particular on the count noun case, though this could be generalized to mass nouns by replacing cardinality measurement with some other appropriate measure.
Let us start by taking the domain of individuals to have the structure of a complete join-semilattice, composed of atomic individuals as well as plural individuals formed as their individual sums (Link 1983, Chierchia 1998a, Landman 2004). If \(a\) and \(b\) are atoms, \(ab\) is their sum, to be interpreted as ‘\(a\) and \(b\) taken together’. Elements of the lattice are ordered via the ‘part of’ relation \(\sqsubseteq\); for example, \(a \sqsubseteq abc\) and \(ab \sqsubseteq abc\). Singular count nouns have atomic individuals in their extensions; plural nouns have extensions based on closure under sum formation of the extension of the corresponding singular. As an (overly) simple example, if dog in a given world denotes the set \(\{ a, b, c, d\}\), dogs denotes \(\{ a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd\}\).

The next step represents more of an innovation. Following Matthewson and Crnič, I propose that quantifiers take as their first argument an individual rather than a set, where individuals can include both ‘ordinary’ extensional individuals and intensional or kind individuals. That is, the semantic type of expressions such as most and more than half is not \(\langle\langle et\rangle, \langle\langle et\rangle, t\rangle\rangle\), as is typically assumed, but rather \(\langle e, \langle\langle et\rangle, t\rangle\rangle\). Matthewson’s motivation for this proposal is the desire to develop a unified crosslinguistic approach to quantification by demonstrating that an analysis developed for the Salish language St’át’imcets (which more transparently requires it) can also be extended to English. She shows, however, that this analysis also offers a better explanation of some aspects of the English data than does the traditional view. Inherent in this analysis is the conclusion that partitive of is semantically vacuous.

The logical forms for most and more than half can be restated in these terms as follows.

\[
\begin{align*}
(37) \ a. & \quad \left[\text{most}\right](x)(P(\epsilon)) = 1 \iff \mu_s(a) > \mu_s(x-a) \\
\ & \quad \text{b.} \quad \left[\text{more than half}\right](x)(P(\epsilon)) = 1 \iff \mu_s(a) > \mu_s(x)/2 \\
& \quad \text{where } a = \max\{ y : y \sqsubseteq x \land P(y) \}
\end{align*}
\]

Consider now the following examples, which on this account represent three options for how the noun phrase can provide an individual to saturate the first argument of the quantifier.

\[
(38) \ a. \quad \text{Most/more than half (of) the teens surveyed admitted to driving dangerously.} \\
\ & \quad \text{b.} \quad \text{Most/more than half (of) teens surveyed admitted to driving dangerously.} \\
\ & \quad \text{c.} \quad \text{Most/? more than half (of) teens want to fit in with their peers.}
\]

In 38a,b, the noun phrase (the) teens surveyed denotes an ordinary plural individual, the maximal plurality of teens surveyed. Exactly how this plural individual is arrived at in semantic composition depends on one’s preferred view of definiteness and specificity. A standard approach to the definite description in 38a is to take the definite article to denote a maximality operator, as in 39a (Chierchia 1998a, among others). In the case of the plural teens surveyed in 39b, which has what I earlier termed a particular interpretation, we might follow Reinhart (1997) and others in taking the derivation to involve a contextually determined choice function applied to the extension of the noun phrase (39b).

\[
(39) \ a. \quad \left[\text{the teens surveyed}\right] = \forall x.\text{teens}(x) \land \text{surveyed}(x), \\
& \quad \text{where } t^P = \max(P) \text{ if it exists; otherwise undefined} \\
\ & \quad \text{b.} \quad \left[\text{teens surveyed}\right] = f(\forall x.\text{teens}(x) \land \text{surveyed}(x))
\]

\[19\] There is some debate as to whether atomic individuals are included in the denotation of plural nouns; see Chierchia 1998a, Krifka 2004 for discussion. This is not crucial for the present purposes.
In either case, the interpretation of the formulas in 37 is straightforward. The sentential predicate is (perhaps optionally) interpreted via a distributivity operator, and the end result is parallel to what obtains via the original logical forms in 10: the sentences in 38a,b are true if the measure of the maximal subpart of the plurality of teens surveyed who admitted driving dangerously exceeds the measure of the maximum plurality who did not admit such behavior (most) or half the measure of the totality of the surveyed group (more than half).

As long as the relevant pluralities have well-defined atoms, μ_S applied to a plurality x can simply reduce to counting of its atomic members. In the case of more than half, this is the only option. Put differently, for more than half, μ_S must ‘look at’ the individual atoms of the plurality, as this is required for precise counting. This fails in the case where the atoms of the plurality cannot be individuated in a nonarbitrary way, resulting in the above-discussed infelicity with more than half (cf. pastel hues in 7). For most, however, there are other and perhaps even simpler possibilities. For example, two pluralities might be compared holistically to determine which is greater in numerosity, without going down to the level of counting atoms. To borrow from the example discussed at the start of the article, this could be likened to placing the two maximum pluralities on the two pans of a metaphorical balance scale and determining whether the ‘greater than’ relation obtains between their magnitudes, without actually determining the precise cardinality of either. From a cognitive perspective, it could be related to an analog judgment of set sizes made via the approximate number system. Either way, the results of such a holistic comparison could be recorded on an ordinal scale or, if the comparison procedure is characterized by tolerance, one with a semiordered structure.

By way of an aside, recall from §3 that more than half sometimes occurs with a noun phrase beginning with all, with little obvious difference in meaning relative to the version without all (e.g. more than half of (all) teens surveyed). A number of authors (Par\-tee 1995, Lasersohn 1999, Brisson 2003) propose that all is not in fact a quantifier, but instead simply adds a meaning of exhaustiveness to the expressions it combines with. As noted for example by Lasersohn, the teens surveyed might allow exceptions, but all the teens surveyed does not. On this account all composes with entity-denoting expressions, which itself supports the above claim that noun phrases like teens surveyed in 38b denote individuals. In its occurrence in more than half sentences, all might then be seen as removing possible ambiguity as to which plurality is intended, thus facilitating precise counting of atomic members.

Let us turn now to 38c. In Matthewson’s theory, which I have adopted, the noun phrase in examples such as these does not denote an ordinary plural individual, but rather a kind, just as do bare plurals in generic sentences such as Teens want to fit in with their peers. As evidence for this, Matthewson notes that the distribution of unmodified plural noun phrases with most parallels that of bare plurals on their generic reading. For example, in episodic contexts where a bare plural would have an existential rather than generic reading (e.g. I talked to linguists), most is awkward (?I talked to most linguists).20 With this analysis of the noun teens in 38c, the interpretation of the formula in 37 becomes problematic. On the view that kinds are atomic individuals, they do not have proper parts of the sort that plural individuals do. This might be resolved by taking \subseteq in this case to be the subkind relation (Crnič 2010), but problems remain. Kinds and their

20 I differ from Matthewson in finding some such examples at least marginally acceptable with sufficient contextual support. These cases would on my account be analyzed as in 39b.
subkinds are not the sorts of entities of which a property such as wants to fit in can be predicated: it is not kinds of individuals that have desires, but rather the individuals themselves. Nor are kinds the sorts of entities that we typically think of measuring.

The first of these issues is parallel to that which arises in the analysis of characterizing generic sentences (e.g. Teens want to fit in with their peers). Within a neo-Carlsonian approach (e.g. Chierchia 1998b) it is typically resolved along the following lines: kinds are reconceptualized as individual concepts (functions from worlds or situations to the maximum plurality of individuals instantiating the kind in a world/situation), which may in turn be type-shifted to properties; the interpretation of the verb phrase is then mediated by a generic operator whose interpretation involves some sort of restricted quantification over entities that possess the property in the given world/situation w. Combining this intensionalized view of kinds with the analysis of quantification embodied in 37 yields 40a,b as the interpretations of 38c with most and more than half, respectively.

\[(40)\]
\[
\text{a. } [(38c)-\text{most}] = 1 \text{ iff } \mu_S(a) > \mu_S([\text{teens}](w) - a) \\
\text{b. } [(38c)-\text{more than half}] = 1 \text{ iff } \mu_S(a) > \mu_S([\text{teens}](w))/2
\]

where \(a = \max(\lambda y. y \subseteq [\text{teens}](w) \land \forall z [z \subseteq y \rightarrow [\text{wants to fit in}](w(z))])\)

From the perspective of the semantics of measurement, the formulas in 40 have an interesting property. Kinds as individual concepts are not themselves in any obvious sense measurable; it is only the extension of the kind in a particular world or situation that can be measured. However, any context of utterance might be compatible with multiple specific choices for the situation variable \(w\). The result of this is that the entities to which the measure functions in 40 apply are characterized by a degree of underspecification or fuzziness that is not present in the case of ordinary plural individuals. I propose that this fuzziness precludes the possibility of precise measurement: without a full specification of the plurality to be measured, there is no possibility of assigning a precise cardinality to it. In that the interpretation of more than half rests on the possibility of precise (i.e. ratio-level) measurement, 40b is uninterpretable, and the infelicity that we have seen with examples of this sort follows. But I would like to suggest that even without resolving this underspecification, a weaker form of measurement is possible. Namely, two such entities may be ordered in size relative to one another. This ordinal level of measurement, as has been previously discussed, is sufficient to support the evaluation of a formula such as 40a, and as such the corresponding most sentence is felicitous.

To summarize, adopting Matthewson’s theory of quantification enables us to more sharply characterize the difference in the sort of noun phrases that the two quantifiers occur with. More than half, whose interpretation is based on precise measurement, is restricted to composing with noun phrases denoting ordinary plural individuals. Most, which places less stringent requirements on measurement level, also composes with kind-denoting noun phrases. The distributional facts that we have observed follow.

One way of giving a formal analysis to most and more than half with various classes of noun phrases having been discussed, it is an appropriate point to briefly relate the present analysis to another formal account of these expressions, that of Szabolcsi (1997).

Szabolcsi’s analysis is based on a close connection between syntactic structure and semantic interpretation. Different quantificational determiner phrases (DPs) occur in distinct syntactic positions (either overtly or at logical form), and this corresponds to a representational or procedural difference in their interpretation. DPs based on most occur in the so-called HRefP position high in the syntactic tree. Like other DPs in this position, they contribute a plural individual to the interpretation of the sentence, corresponding to the elements of some minimal witness set of the quantifier; this individual
serves as the logical subject of predication.21 By contrast, DPs based on more than half occur in the lower PredOp position; like other quantifiers in this position, they perform a counting operation on the property denoted by the remainder of the sentence, similar to the procedure more typically assumed for generalized quantifiers.22 Differences of this sort are argued to account for a range of divergences between individual quantifiers, relating among others to scope-taking behavior, anaphora, and availability of collective vs. distributive interpretations. While she does not provide a full analysis, Szabolcsi also proposes that this difference underlies the contrast in 5 (i.e. The professors met *most/more than half of the boys each), in that more than half patterns in this respect with other ‘counters’ such as modified numerals, which are also analyzed as occurring in PredOp.

Szabolcsi does not, however, offer an explanation for why it is that most patterns as individual-introducing and more than half as a counter, rather than, say, the reverse. In fact, she uses divergences between the two as evidence that the difference between the two modes of operation she proposes is not purely denotational in nature: two denotationally equivalent quantifiers do not necessarily behave identically from a procedural perspective. Here, the account developed in the present article has something to offer. At the most basic level, the difference I propose between most and more than half relates to the nature of the mathematical formulas by which their meanings are encoded. That for most is based entirely on a ‘greater than’ relation. That for more than half involves, in addition to this, an operation of division by two. As a consequence, more than half forces interpretation relative to a ratio scale, while most does not. It is now less puzzling why more than half patterns with counters: its denotation is necessarily based on exact counting (or, as must always be added, some other sort of ratio-level measurement). Most’s denotation, by contrast, does not assume any sort of precise counting or measurement beyond a basic and potentially tolerant operation of comparing magnitudes; it is likewise not surprising that it therefore patterns with other quantificational expressions whose denotations are not based on counting.

If desired, the present analysis could be implemented within a representational/procedural framework of the sort Szabolcsi proposes. I do not attempt to address whether such an approach is necessary or desirable. I hope, however, that this brief discussion has demonstrated that even if one chooses to adopt a procedural framework, the core insight embodied in the present analysis still has explanatory value. Looking for a denotational explanation for what Szabolcsi terms ‘differences in mode of operation’ is not a hopeless matter after all.

5. Conclusions and connections. There is no doubt that speakers sometimes talk about degrees, and correspondingly no doubt that degrees must somehow be semantically represented. Most current semantic theories that deal with measure, gradability, and comparison in some way assume degrees and scales as part of the ontology. It is furthermore well recognized that scales vary in their structures, and that this has linguistic effects. In particular, Rotstein and Winter (2004) and Kennedy and McNally (2005) demonstrate that the distinction between scales that do and do not have end-

21 A witness set of a generalized quantifier is an element of that quantifier that is also a subset of the extension of the noun phrase it is based on.
22 Szabolcsi in fact discusses more than 50% rather than more than half, but my intuition is that more than half behaves essentially the same in the relevant respects.
points has consequences for the interpretation of gradable adjectives in their positive
forms, as well as for the distribution of degree modifiers. But beyond this, there is little
consensus as to the structure of scales, and in particular no established view on the full
range of parameters on which scales can vary in their structures.

The present work points to another dimension along which scales vary, one that cor-
responds to distinctions that are well known from measurement theory, and to findings
from the psychology of number and perception. Measurement can be carried out by var-
iouss procedures, and these differences can be represented via scales that differ in the
level and nature of the information they encode. Perhaps surprisingly, this is true even
of what is arguably the most basic sort of measurement, namely assessing the numerosi-
ty of sets of entities. Scales are not simply linearly ordered sets of points. Some have
more structure than this, namely, an addition operation that tracks concatenation in the
domain of measured entities. Others have less structure than this, in that the degrees that
constitute them are not totally ordered with respect to one another. The comparison of
most and more than half shows that this aspect of scale structure—which might be
called ‘ordering strength’—also has linguistic consequences. More than half (and by
extension other numerical expressions of proportion) requires a ratio-level scale, and is
thus restricted to use in cases where entities can be mapped to a scale of this sort. Most,
by contrast, can be interpreted with respect to a simple qualitative ordering of entities,
one that would be reflected by an ordinal or semiordered scale. As demonstrated by the
corpus analyses reported here, this distinction results in quite dramatic differences in
the distribution of the two quantifiers, as well as in the interpretations they may receive.

If the structures of scales—even those tracking the same dimension—can vary in this
way, we should expect to see this reflected in other domains of natural language as well.
While it is beyond the scope of the present article to consider this issue more broadly,
there is evidence that this is in fact the case. It was noted above that authors such as Sas-
soon (2010) have argued that the ratio/interval distinction is relevant to areas such as
the semantics of gradable adjectives. That between totally ordered and semiordered
scales also appears to play a role elsewhere. There is another well-known contrast that
parallels that between most and more than half. As pointed out by Kennedy (2007),
there is a clear difference in interpretation between explicit comparatives such as 41a
and implicit comparatives such as 41b.

(41) a. Fred is taller than Barney.
 b. Fred is tall compared to Barney.

While 41a can be felicitously used to describe a situation where Fred’s height is just
slightly greater than Barney’s (say, 1 cm), the felicitous use of 41b requires there to be
a significant difference in the two individuals’ heights. This corresponds closely to the
distinction between more than half and most, the latter requiring for felicity a ‘signifi-
cant’ difference in set sizes. The two previously discussed proposals for the introduction
of tolerant ordering relations have in fact been applied to exactly this pattern. Specifi-
cally, van Rooij (2011a,c) holds that the difference between 41a and 41b corresponds to
that between strict weak orders and semiorders, while Fults (2011) proposes that the in-
terpretation of explicit comparatives involves a ratio scale, while that of implicit com-
paratives is based on an analog magnitude scale. The parallel to the present account
should be clear.

That factors relating to ordering strength have explanatory value in the adjectival do-
main as well suggests the broader relevance of the measurement-theoretic account de-
veloped here.
Appendix: Nouns occurring with most and more than half

A.1. Plural noun phrases with nonatomic extensions (as judged by three or more out of five coders).

Most: areas outside Kabul; basic counseling curricula; belongings; bones and rubbish; businesses’ misfortunes in monitoring and tracking change; circumstances; communicative abilities; conversations; cultural change processes; hair types; environmental issues in the 1990s; human judgments; media; medical and educational benefits; nascent social movements; needs; overexposed areas in an image; parts of India’s rural countryside; parts of the country; parts of the economy; periods; places in the world; possessions; social conditions under which medieval pilgrimage flourished; species and ecosystems; suburbs; things in life; things in that region; urban areas throughout the country; wetlands.

More than half: known swamp pink populations; lands; personality variations; wetlands that existed during colonial times in the continental U.S.

A.2. Mass noun phrases without measurement units/possible measurement units (as judged by three or more out of five coders).

Most: action; American architecture; business (2×); care; children’s art media; commuting; credit; credit for the work’s reputation; current scholarship on globalization; dinner-party conversation; dust and grit; editorial opinion; enjoyment; events in the Bible; evidence; furniture; global advertising for its Chevrolet brand; hardware; interest Chinese find in Thai in original Buddhism; luxury town house buying; major output of television, cinema, radio, press and news organizations; music; new logging; privatization; real shopping; research on low vision; sadness; scholarship; ultimate damage from those traumas; work (2×)

More than half: angiosperm phylogenetic diversity; legal education; maintenance work; manufacturing production of the world; productivity.

REFERENCES

CUMMINS, CHRIS; ULI SAUERLAND; and STEPHANIE SOLT. 2012. Granularity and scalar implicature in numerical expressions. Linguistics and Philosophy 35.135–69. DOI: 10.1007/s10988-012-9114-0.

Hackl, Martin. 2009. On the grammar and processing of proportional quantifiers: Most versus more than half. Natural Language Semantics 17.63–98. DOI: 10.1007/s11050-008-9039-x.

Halberda, Justin; Len Taing; and Jeffrey Lidz. 2008. The development of ‘most’ comprehension and its potential dependence on counting ability in preschoolers. Language Learning and Development 4.99–121. DOI: 10.1080/15475440801922099.

SASSOON, Galit Weidman. 2007. *Vagueness, gradability and typicality—A comprehensive semantic analysis*. Tel Aviv: Tel Aviv University dissertation.

