PREDICTING CONVERSATIONAL TURNS: SIGNERS’ AND NONSIGNERS’ SENSITIVITY TO LANGUAGE-SPECIFIC AND GLOBALLY ACCESSIBLE CUES

CONNIE DE VOS                      MARISA CASILLAS                  TOM UITTENBOGERT
Tilburg University                University of Chicago              Radboud University

ONNO CRASBORN                                  STEPHEN C. LEVINSON
Radboud University               Max Planck Institute for Psycholinguistics

Precision turn-taking may constitute a crucial part of the human endowment for communication. If so, it should be implemented similarly across language modalities, as in signed vs. spoken language. Here, in the first experimental study of turn-end prediction in sign language, we find support for the idea that signed language, like spoken language, involves turn-type prediction and turn-end anticipation. In both cases, turns like questions that elicit specific responses accelerate anticipation. We also show remarkable cross-modality predictive capacity: nonsigners anticipate signed turn ends surprisingly well. Finally, we show that despite nonsigners’ ability to intuitively predict signed turn ends, early native signers do it much better by using their access to linguistic signals (here, question markers). As shown in prior work, question formation facilitates prediction, and age of sign language acquisition affects accuracy. The study thus sheds light on the kinds of features that may facilitate turn-taking universally, and those that are language-specific.*

Keywords: turn-taking, turn-end anticipation, interactional linguistics, conversation analysis, discourse processing, Sign Language of the Netherlands, gesture

1. INTRODUCTION. Everyday conversation is the primary mode of language use across human societies. During conversation, we take turns at talking by responding to each other contingently. A turn at talk in conversation is produced by a single interactant, is composed of components such as words or clauses, is variable in length, typically ends with an opportunity for turn transition (or else a lapse in conversation or the end of the interaction), and generally is not prespecified in advance with respect to what will be produced or who will take a turn next (Sacks et al. 1974). Despite this variability in turn form, length, and allocation between interactants, turns in conversation are typically taken swiftly. Transitions between turns in adult conversation average around 200 ms crosslinguistically (Stivers et al. 2009, de Vos et al. 2015). This average transition time is fast—at one third the time it takes to plan a single word and one eighth the time...
it takes to plan a simple transitive sentence, everyday conversational turn-taking is made possible only by the orchestration of multiple linguistic processes engaged in real time as the current turn unfolds (see Levinson & Torreira 2015 for a review). Such a brief temporal window arises naturally as a consequence of coordinating who talks when (Sacks et al. 1974) and aids in the early identification and management of delayed responses (e.g. hesitations) and communicative breakdowns (Pomerantz & Heritage 2012, Bögels et al. 2015, Kendrick & Torreira 2015).

While the typical timing for a contingent response varies greatly across the animal kingdom (Pika et al. 2018), the human turn-taking system is special in maintaining a rapid response norm while also supporting immense flexibility in what is talked about. Human conversations are not preformulated, but rather collaboratively organized in both content and timing. Each turn progresses the interaction forward, bit by bit, making different kinds of responses relevant along the way: some turns demand specific next actions (e.g. ‘How many days will they be away?’), and others fulfill these demands (e.g. ‘Four’), refer to points of potential communicative breakdown (e.g. ‘Who, our neighbors?’), or make many other kinds of interactive plays (see e.g. Schegloff 2007 for an overview of conversational sequencing). Given the shifting and flexible nature of relevant responses in human conversation, the observed pattern of rapid transitions between turns at talk presents a truly impressive psycholinguistic puzzle.

1.1. The role of prediction in rapid turn transitions. This ability to quickly and smoothly transition between speakers requires the responder both (i) to track incoming speech for cues as to when a response might be needed and, when relevant, what sort, and (ii) to actually plan that response such that it is ready to launch immediately at the end of the current speaker’s turn (Levinson & Torreira 2015). If the ongoing turn contains overt linguistic or gestural cues that indicate the need for a response (e.g. ‘Where is … ’, ‘ … , isn’t it?’, or a point at the addressee), those cues alone may allow the addressee to effectively and immediately judge that a response is required and, in many cases, may allow the inference of what type of response it should be (Stivers & Rossano 2010). Turn-structure prediction, which encompasses predicting both the ends of unfolding turns and their hoped-for responses, is thus facilitated by the use of response-eliciting cues by the current speaker. The repertoire of cues contributing to response elicitation includes both linguistic and nonlinguistic signals (Stivers & Rossano 2010), but work exploring the psycholinguistic processes underlying conversation has typically privileged the former.

In a landmark study, de Ruiter et al. (2006) developed an experimental method for investigating the linguistic cues by which listeners could predict the upcoming ends of ongoing turns. They recorded dyadic conversations between Dutch speakers, extracted individual turns at talk, and manipulated them to control for the availability of lexicosyntactic and prosodic cues, among others. Other Dutch-speaking participants then listened to the manipulated turns and pressed a button at the moment they felt each turn was about to end, being encouraged to anticipate that point. They found that participants, above all, required lexicosyntactic information in order to accurately predict upcoming turn ends, and intonational information on its own did not lead to accurate prediction. A number of studies since then have used similar paradigms or eye tracking to identify other linguistic cues that may aid on-line turn-structure prediction. For example, Bögels and Torreira (2015) used a similar paradigm to establish that prosodic cues are crucial in the final moments of the turn for disambiguating whether the speaker will continue on with another increment of talk or will finish their speaking turn. This role of prosody is important because many turns in natural conversation contain multiple points of potential completion.
So while lexicosyntax demonstrably plays a crucial role in identifying the precise moment of turn end (i.e. the end of the last TCU), prosody also plays a pivotal role in multi-TCU turns for anticipating whether the current TCU is intended as the last one and, therefore, whether speaker transition is likely to take place soon.

Linguistic cues are only part of the picture when it comes to turn-related predictions. Experimental paradigms similar to that used by de Ruiter et al. (2006) have also been used to investigate the use of nonlinguistic visual information in predicting upcoming turn structure, primarily finding that visual information aids accurate prediction for spoken conversation (Keitel & Daum 2015, Latif et al. 2018). These experimental findings are complemented by those from systematic analyses of naturalistic observational data, including data from head-worn eye-trackers in spontaneous conversation (Rossano et al. 2009, Stivers et al. 2009, Holler & Kendrick 2015, Kendrick & Holler 2017, Holler et al. 2018). In fact, several studies have noted that, even when the observer does not understand the conversational speech (e.g. because it is in an unfamiliar language), they can still spontaneously predict upcoming responses (Casillas & Frank 2017) and reliably identify turn-end boundaries (Carlson et al. 2005, Fenlon et al. 2007)—abilities that may be attributed to the integration of multiple nonlinguistic cues and/or adaptation of related linguistic knowledge. The bigger picture emerging from this literature is that conversational participants are experts at tracking and capitalizing on cues to an upcoming response, be they linguistic or not.

The ability to track and capitalize on cues to an upcoming response is also observed in passive experimental studies of turn-taking, in which participants spontaneously predict upcoming responses when observing a conversational exchange. Despite not being participants in the exchange themselves, participants appear to employ anticipatory processes similar to what they use in first-person interaction, perhaps as the outcome of simply attempting to follow the conversation (Casillas & Frank 2017). Across multiple such studies, questions have shown a privileged status in participants’ predictions. For example, when asked to watch a video of dyadic conversation, adults and children ages two and above are significantly more likely to look at the upcoming addressee when they hear a question than when they hear a nonquestion (Lammertink et al. 2015, Casillas & Frank 2017; see also Keitel et al. 2013, Keitel & Daum 2015). Indeed, returning to observations of natural interaction, many of the documented rapid responses for adult conversation across typologically diverse languages come from the transitions between questions and their answers (Stivers et al. 2009, Holler et al. 2018). Taking all of this evidence together, language users appear to be both motivated and well equipped to track the incoming signal for signs of response elicitation, giving questions and other similarly response-eliciting turn-types priority in the multithreaded psycholinguistic process of comprehending and producing during conversation.

While research investigating the psycholinguistic processes underlying turn-taking has built on a typologically and methodologically rich collection of findings, few studies have experimentally investigated these processing effects in signed languages, and there are none as far as we know that have experimentally investigated the ability of nonsigners to parse the turn structure of sign language. Meanwhile, the INTERACTION ENGINE HYPOTHESIS (Levinson 2006, 2019) proposes that a human-specific propensity
for coordinating with others on joint activities should lead to interactional skills (like turn-taking) emerging early in development and in similar ways across the world’s language communities, including signing communities. By using both native signers and nonsigners in the current study, we are able to tease apart the relative contributions of linguistically coded and nonlinguistically coded response-eliciting cues within the same visual modality, potentially giving substantial support to the special role that a universal interactive competence may play in communicative interaction.

Our central research question in the current study is whether similar predictive processes underlie turn-end anticipation in signed and spoken languages. Specifically, we investigate whether: (i) response-seeking utterances initiate advantaged predictive processing in signed turns, as they do in spoken turns, (ii) cues with a shared basis in sign and co-speech gesture are utilized by signers and nonsigners alike in turn-end prediction, and (iii) cues specific to the sign language are leveraged for turn-end prediction only by its signers, with an advantage for signers who began learning it earlier in life.

To test these predictions, we develop a modified version of de Ruiter et al.’s classic (2006) button-press experiment, specifically adapting it to evaluate turn-end prediction in Sign Language of the Netherlands (Nederlandse Gebarentaal, henceforth NGT). As described above, this method places experimental participants as ‘stand-in’ addressees who respond to turns extracted from a prerecorded spontaneous conversation. They are asked to press a button at the moment they feel each turn is about to end, being encouraged to anticipate that point; the outcome is thereby purely a measure of a participant’s response to the unfolding linguistic structure of the current turn. We chose this controlled experimental method over, for example, analysis of spontaneous signed conversation (de Vos et al. 2015) because it allows us to analyze an overt indicator of real-time turn-end prediction that is similarly executed across turns and participants (i.e. the button press), to reuse the same stimuli across multiple participants and thus identify how specific types of linguistic cues consistently influence predictions, and to test the same stimuli with both signing and nonsigning participants. We recruited a diverse sample of NGT signers and a matched sample of hearing, nonsigning Dutch speakers to participate in the experiment. We also used highly naturalistic stimuli (described below) to analyze the role of linguistically coded (henceforth ‘language-specific’) and ‘globally accessible’ (i.e. not language-specific; further defined below) response-eliciting cues for turn-end prediction by signers and nonsigners.

1.2. Visual signals to turn boundaries and transitions. Across time and space, sign languages have arisen spontaneously from social interaction among deaf individuals and between deaf and hearing individuals. Despite the fact that they are produced gesturally and perceived visually and/or tactically, signed languages, both urban and rural, display evidence of linguistic organization parallel to the phonological (i.e. submorphemic) level (Stokoe 1960, Brentari 1998, van der Kooij 2002), the morphosyntactic level (Wilbur 1987, Sandler & Lillo-Martin 2006), and the prosodic (or paralinguistic) level (Sandler 1999, Brentari & Crossley 2002, Russell et al. 2011) of spoken languages (see also Senghas & Coppola 2001, de Vos & Pfau 2015, Zeshan & Palfreyman 2017, de Vos & Nyst 2018). This also likely extends to aspects of language in use that are associated with social interaction: turn-taking and communicative act development (Casillas & Hilbrink 2020).

Earlier work on sign language interaction has suggested that the signed modality may allow for more overlap between consecutive turns than does the auditory modality, because signed language is perceived visually but produced motorically, thus avoiding the
interference effects of speaking and listening (Baker 1977, Emmorey et al. 2009). For this reason, overlap between consecutive turns at talk may not be as problematic as it would be in spoken conversations. In line with this assumption, Coates and Sutton-Spence (2001) claimed that a group of four British signers, who were close friends, allowed for more overlapping talk in signed conversation than has typically been found for spoken conversation. In spoken conversation, too, visible cues used in the coordination of turns at talk appear to influence interactional timing, typically associated with speedier responses, even when prosodic patterns are taken into account (Stivers et al. 2009, Holler et al. 2018, Holler & Levinson 2019). If our ultimate aim is to reveal the cognitive mechanisms that allow us to smoothly coordinate during everyday conversation, we must take these observations into account; the affordances of visual signals might have substantially shifted the functioning of the turn-taking system.

Notwithstanding these initial observations, recent corpus analyses demonstrate that sign language users are in fact as sensitive to turn boundaries as spoken language users are. In making a comparison between the signed and spoken modalities, however, allowance must be made for a key difference: whereas preparatory motor articulations are mostly not visible inside the mouth, they are visible on the hands: signed languages use heavy articulators, with a lot of inertia, which move a large distance between rest position and signing space. Therefore signers display early preparatory and late retracting movements, engendering smooth transitions in and out of a conversational turn, leaving the impression of overlapping talk, while new content is not (yet) provided (McCleary & Leite 2013 for Brazilian Sign Language, Groeber & Pochon-Berger 2014 and Girard-Groeber 2015 for Swiss German Sign Language, Manrique & Enfield 2015 on Argentinean Sign Language, and Byun et al. 2018 on cross-signing).

In further support of the interaction engine hypothesis, corpus analyses of NGT have revealed that when the physical preparation and retraction phases needed for sign articulation are taken into account—that is, when we look only at so-called stroke-to-stroke turn boundaries (i.e. the linguistic signal and not its preparation or fade-out)—turn-timing in NGT conversations looks remarkably similar to turn-timing in a diverse set of spoken languages (cf. Stivers et al. 2009 and de Vos et al. 2015). Casillas et al. (2015) experimentally tested this observed pattern by asking NGT signers to watch signed turns and press a button at the moment they thought the turn was about to end; even when cutting off the turns at the end of the final stroke, participants were able to accurately and reliably anticipate the turn end. Beukeleers et al. (2020) provide further converging evidence for the stroke-to-stroke boundary hypothesis by showing that signers of Flemish Sign Language spontaneously produce anticipatory gaze shifts toward turn-end boundaries in a mobile eye-tracking study. It is yet unknown what kinds of linguistic cues drive signers’ predictions about upcoming turn ends.

As predicted by the interaction engine hypothesis, crosslinguistic work on spoken languages indicates that when hearing individuals are asked to listen to an unfamiliar spoken language, they can identify some aspects of turn structure and even predict upcoming responses by a third party to some degree (Carlson et al. 2005, Casillas & Frank 2017). This indicates that at least some cues to turn structure do not require language-specific knowledge. In line with this hypothesis, although focusing on monologue rather than dialogue, Fenlon et al. (2007) showed two story retellings in British Sign Language (BSL) and in Swedish Sign Language (SSL) to four signers of BSL and to four speakers of British English. After two practice sessions, the participants were asked to view the narrative twice more and press a button whenever they spotted a sentence boundary. The valid window for which responses were included as correct was
defined as 500 ms before and 1000 ms after the final frame in which the handshape of the sentence-final sign was still held (i.e. the end of the linguistic signal). There were no significant group differences, with participants identifying ‘pauses, drop hands, and holds’ as the most reliable cues to sentence boundaries (Fenlon et al. 2007:192ff.). All of these manual prosodic cues involve the cessation (or preparation for cessation) of hand movements and are effectively equivalent to interutterance silence in spoken language data.

Brentari et al. (2011) asked eight ASL signers and eight nonsigners (Purdue undergraduates) to watch constructed stimuli that were recorded as infant-directed signing (IDS) in the presence of a sixteen-month-old addressee (for more on IDS in ASL, see Holzrichter & Meier 2000). Participants first watched a long segment of IDS, and were then subsequently asked whether a sentence break was present between the two target signs presented as stills on a paper form. All signs were controlled for syllable count, and identical sets of target signs but with different intonational phrasing were contrasted within the stimulus set. Participants then indicated on a Likert scale how confident they were about there being a sentence break between the two signs. Again, there were no significant differences between the signers and nonsigners in terms of their ability to identify prosodic breaks and nonbreaks between the signs. A further analysis of prosodic cues indicated that whereas signers relied mostly on pauses to identify the breaks, the nonsigners were additionally sensitive to the dropping of hands and holds. Due to the nature of these cues, Brentari et al. suggested that it is possible that adult nonsigners could do this segmentation reliably due to their lifelong experience with gesture. In order to determine whether nonsigners segment on the basis of such gestural competence, they also tested twenty-four hearing, nonsigning nine-month-olds in a visual fixation procedure and found similar results on the same stimuli, suggesting that prosodic boundaries can be identified on a nonlinguistic basis and even by those with little experience with co-speech gesture.

While prior work has therefore shown that speakers and signers alike can detect utterance segments on the basis of cues that are, for them, either linguistic or nonlinguistic, few studies have measured whether this ability is exercised in real time during interaction, and none have investigated what role these cues play in predicting upcoming turn structure. In the current study, we probe the extent to which linguistic knowledge is required to reliably anticipate turn ends in signed conversation. We gathered data from signing participants and a hearing, nonsigning control group that was matched as much as possible to the signers for participant age, gender, and education. We analyze the data with respect to differences in anticipation patterns across these groups.

While it is clear that sign language grammars are not in any way dependent on or derived from spoken language grammar, there are transparent and active links between the expressive repertoire of sign languages and the co-speech gesture systems in which they have emerged (e.g. Janzen & Shaffer 2002, Le Guen 2012, de Vos 2015, Tano & Nyst 2018). A general finding across sign languages is that, while these gestural forms are still used by hearing individuals alongside speech, signers use them with a higher degree of systematicity, to the extent that they have in some cases become obligatory grammatical markers (e.g. Janzen & Shaffer 2002, Pfau & Steinbach 2006). An example of this is the use of eyebrow movements in concert with either speech or manual signing. Ekman (1979) notes that brow frowns are associated with the expression of puzzlement, while brow raises are associated with surprise for speakers of American English. In NGT, polar questions are grammatically marked by brow raises, while content questions feature a frown (Coerts 1992, de Vos et al. 2009). Hence, while both
speakers and signers use these signals communicatively, they have become an intricate aspect of linguistic question-marking in NGT, as well as many other signed languages (Zeshan 2004). Because of the gestural or paralinguistic origins of these signs, in the present study we assume some degree of accessibility to nonsigners as well, due to their experience with such cues in spoken conversations (see also Mondada 2007, Brentari et al. 2011).

In addition to these prosodic markers, which function on par with question intonation in spoken languages, NGT has multiple lexical signs associated with questions. On the one hand, there is a set of signs with gestural origins, for example, palm-up and pointing, that may be accessible to nonsigners, as shown in Figure 1. Prior work on NGT had already shown that both index-finger points and palm-up gestures frequently occur in phrase-final position (Crasborn et al. 2012) and thus are potential markers of TCUs. On the other hand, there are lexical question signs (how, how-many, who, etc.; see Fig. 1 for examples) for which no conventional gestures or emblems are attested in the surrounding Dutch co-speech gesture system (Crasborn & Akkermans 2020). Hence, this group of question cues clearly relies purely on linguistic convention, and thus they are unlikely to be semantically accessible to nonsigners. In NGT these question signs may occur in sentence-final position, sentence-initial position, or both (Coerts 1992, de Vos et al. 2009). Moreover, when the question sign is used at the beginning of a question, it is often combined with a palm-up in sentence-final position. For these reasons, we hypothesized that both palm-ups and index-finger points would function as turn-final cues that invite an addressee response.

In sum, the specific combination of cues with a clear gestural origin and cues that arise from linguistic convention makes questions in NGT of particular interest in this study, which includes NGT signers (who have access to both types of cues) and nonsigners (who have access to only the first type). We hereafter refer to these two types of cues as ‘globally accessible’ vs. ‘language-specific’ with respect to our study population (NGT signers and nonsigning Dutch speakers).
By investigating turn prediction in NGT conversation with signers and nonsigners, we experimentally extend prior work suggesting crosslinguistic competence in identifying boundaries in upcoming turn structure (Carlson et al. 2005, Fenlon et al. 2007, Brentari et al. 2011, Casillas & Frank 2017) while also systematically testing how linguistic knowledge (cue type) influences participants’ ability to anticipate what will come next. Specifically, we hypothesized that NGT signers and nonsigners would be able to predict turn ends in NGT conversation, that both would show an advantage for questions over nonquestions, and that response accuracy would benefit both groups when turns contained globally accessible response-eliciting cues, but that only signers would show a benefit for questions when the critical cue was specific to NGT. By capitalizing on visual cues shared between NGT signers and nonsigning Dutch speakers in this way, the current study critically examines the extent to which linguistic knowledge contributes to turn-end prediction.

2. Materials and methods. Following de Ruiter et al.’s (2006) study, we asked participants to view short video clips from a dyadic conversation between two native NGT signers and to press a button at the moment they thought the ongoing turn was about to end. We introduced several modifications to the basic experiment design to adapt it for signed conversation, as illustrated by Figure 2. First, target turns were presented after a short period of conversational context displaying both signers, after which only the target signer was shown, frozen for a moment, before their target turn began. Second, to ensure that the entire signing space, including nonmanuals, was optimally comprehensible to participants, we recorded the stimulus conversations in a specialized setup that allows participants to make eye contact during the conversation, despite them being seated in separate recording rooms. This specialized setup thereby gives experimental participants the frontal view they would have if they were the addressee in a normal dyadic conversation. Third, each target turn ended at the end of the final stroke (the last conventional linguistic signal) and not at the end of the retraction of the final sign, in line with corpus evidence for perceptual turn-end boundaries for signed conversation (de Vos et al. 2015), as further explained below.

We made special efforts to recruit a diverse sample of NGT signers in order to ensure that our results would generalize to as much of the community as possible. In particular, we note that the NGT community is heterogenous in age of acquisition, for both deaf and hearing signers. That is to say, it is estimated that only between five and ten percent of deaf children in Western societies acquire sign language from adults who are themselves native signers (Schein & Delk 1974, Kyle & Woll 1985), but the number could be even lower in the case of smaller deaf communities (Costello et al. 2008). Owing to the historical educational policy in the Netherlands, deaf children have oftentimes not received any sign language input until they were old enough to attend a deaf boarding school (Tijsseling 2014). However, the availability of interpreter training and sign language teacher programs in recent times has boosted the acquisition of NGT among (mostly) hearing, young adults. Thus, there are large differences in the age at which NGT signers began to experience a sign-immersive environment. In what follows we give details on the NGT community as well as our methods of participant recruitment and stimulus selection, and a description of the structure of each trial.

2.1. Participants. We recruited sixty-four NGT signers and fifty-three nonsigning Dutch-speaking control participants for the current study. Because the NGT community, like many signing communities, is characterized by interindvidual variability in the onset and quality of sign language input, we sampled signers across a broad age
range and with diverse language backgrounds and educational profiles. The NGT signers were classified as ‘early learners’ (N = 32; started learning NGT before age five) or ‘late learners’ (N = 32; started learning NGT at age five or later) for the present analyses (see appendix Figure A1 for a demographic overview of the tested participants).

The early learners (females = 18; 56%) all self-reported as deaf (deafness onset for all before age three), were 47.25 years old on average (range: 10–77; median = 47), and ranged in their linguistic-input experience from hearing and/or deaf signers in their household (N = 7), other children and teachers at primary school (N = 14), or a combination of these (N = 11). Early signers also ranged in completed education from primary school to a professional bachelor’s equivalent, and predominantly represented one of the three Western dialects of NGT, though many reported fluency in multiple dialects.

The late learners (females = 21; 66%) included participants who self-reported as deaf (deafness onset for all before age three; fifteen with deafness onset before age three, two after adolescence, and the rest in between) and as hearing (N = 12), were 41.56 years old on average (range: 19–76; median = 29), and ranged in their linguistic-input experience from hearing and/or deaf signers in both their household and school (N = 4), other children and teachers at primary school (N = 11), professional education as an interpreter (N = 13; all of the hearing late learners and one deaf late learner), or via social interactions in the NGT community (N = 4). Late signers also ranged in completed education from primary school to a professional and/or research bachelor’s equivalent, and predominantly represented the Western dialects of NGT, with slightly more Northern signers than the early-learner group.

The nonsigning Dutch-speaking participants (females = 37; 71%) were 44.77 years old on average (range: 13–80; median = 44) and ranged in completed education from primary school to a professional and/or research bachelor’s equivalent.

In order to recruit participants from such a diverse sample, we created an ad hoc experiment room inside the back of a utility van and then drove this mobile lab to multiple
NGT subcommunities around the Netherlands. We reached out to participants in advance through personal contacts and via their responses to study advertisements. When several participants in a single region were interested, we scheduled a community visit during a time when participants could be tested back-to-back in a single day. Experimental sessions were run in the back of this large utility van, from which the seats had been removed and in which the windows were covered to keep the visual testing environment similar between locations. NGT signers were recruited and tested over the course of three months (twelve testing days) in seven locations around the Netherlands until thirty-two early learners and thirty-two late learners had been tested. Nonsigning participants were then recruited and tested over the course of six months (twelve testing days) in three locations around the Netherlands using the same basic procedure for recruitment. The only difference in recruiting the hearing, nonsigning participants is that they were selected beforehand to match, as well as possible, the age, educational profile, and gender balance of the signing participants who had already been tested. We aimed for sixty-four Dutch-speaking controls, and were able to recruit fifty-three—something of a feat given the strict sampling restrictions we put on age and education combined, with a constrained data-collection period due to the primary recruiter’s availability (limited to her master’s thesis work period). Nonsigners were all native Dutch speakers, and all spoke English as a second language with some degree of fluency.

2.2. Materials. We created the stimuli by recording two completely spontaneous, unscripted conversations in NGT and then splicing out eighty fragments from each. We invited two dyads of NGT signers, each previously acquainted (i.e. friend pairs) but not recently in contact with each other, to come and catch up on camera. The first dyad was a close friend pair catching up after the summer holidays, who discussed, among other things, a recent trip and a night out with friends. The second dyad was acquaintances, who talked, among other things, about favorite travel destinations and what they would do if they were to win the lottery. All four signers (one male, three females) were in their twenties and thirties and reported using one of the three Western dialects predominantly. The conversations were recorded with the two signers sitting in separate rooms and chatting over a specialized video-chat-like setup with one-way mirrors so that they could engage in mutual gaze, as depicted in panel A of Fig. 2 above. Again, this special setup means that the resulting stimuli allowed the experimental participants to have full frontal-view access to each signer’s body movements, facial expressions, and manual signs, as is typically afforded to addressees. Each pair was recorded for ninety minutes, at which point the recording was stopped. As confirmed by a native signer of NGT, the first conversation had a natural and even back-and-forth from the beginning, while it took the second dyad approximately ten minutes to arrive at a similarly paced conversation. These recording sessions resulted in two separate but synchronized ninety-minute video streams for each dyad. We created a joint video file for each conversation by embedding the two video streams into the left and right regions of the frame, visible in panel B of Fig. 2. We then also created two alternate versions of each joint video file in which either the left signer or the right signer was masked such that only the other signer was visible.

The first author then used the joint video files—which display both signers simultaneously—to identify eighty turns from each conversation for use in the button-press experiment, using the next-turn proof procedure (Hutchby & Wooffitt 1998:15). We first narrowed our focus to turns that were immediately followed by a response from the addressee with nonoverlapping stroke-to-stroke timing; this criterion helped to ensure that the target turn contained sufficient cues to speaker transition to have successfully
elicited a well-timed response under natural circumstances. It also allowed us to use the same turns in a separate experiment, not reported here (see Casillas et al. 2015). Among those turns with the required response timing, we focused on turns that were comprehensible given only a few seconds of prior context (e.g. excluding ‘inside’ references to places/events/people known only to the interlocutors), at least one second long, and free of significant mid-turn self-repair or other distractions (e.g. the addressee drinking from a water bottle). These turns, while fully comprehensible without extensive context, still contained markers of natural utterance production (e.g. minor pauses and self repairs) and were highly variable in content, duration, and the number of TCUs they contained.

From the remaining turns under consideration, we selected approximately equal numbers from each signer, and then split them into a set of turns used for training (i.e. for practice in getting used to the task) and a set of turns used for testing (i.e. those used in our analyses). Ultimately, we identified twenty-eight to thirty-two test turns and nine to eleven training turns for each of the four signers, summing to eighty turns per dyad (see appendix Figure A2 for details on each target turn). We also then extracted the immediately preceding context for each turn, limiting this context to what was minimally necessary to fully comprehend the target turn. We extracted the context video clips from the joint-view video, which showed both signers. We then extracted the target-turn video clips from the masked version of the video that showed only the signer producing the target turn. We cropped the end of the target turn to the end of the final stroke, in line with the stroke-to-stroke turn-boundary hypothesis (see de Vos et al. 2015). Between the two dyads, this process resulted in 160 conversation fragments (each clipped into context clip and target-turn clip), thus resulting in 320 video clips for use during training and testing trials in the experiment.

Annotation. With the indispensable contributions of three native NGT signers and two NGT experts, we then annotated each of the target turns for its communicative act type (question vs. nonquestion), number of potential end points (single- vs. multi-TCU), and any lexical or prosodic cue(s) it contained that could be used for indicating upcoming signer transition/upcoming turn end (see appendix Fig. A2 for the full set ultimately considered). Given the spontaneous nature of these conversational stimuli, we did not know in advance which cues would be used, or how often. We therefore started by creating an exhaustive list of potential cues and then annotated each cue when it occurred in a target turn. The cues annotated include: brow movements, including frowns, raises, and mixed categories (de Vos et al. 2009 on NGT, Ekman 1979), body leans (van der Kooij et al. 2006), head movements, and eye blinks (Ormel & Crasborn 2012). Notably, these nonmanual prosodic cues abounded in our naturalistic data set, but because of their multifunctional nature, they occurred across the question and nonquestion stimuli with similar frequencies. The complex and covarying use of these cues in naturalistic interaction prevented us from using them to systematically investigate predictions in the current experiment. In contrast, the different lexical manual cues to questionhood in our data set were salient, highly associated with questions, and included both language-specific and globally accessible forms (see below).

We thus identified two groupings of commonly used lexical signs that indicate questionhood: cues accessible to both the signers and nonsigners as potentially question marking because of their use in Dutch co-speech gesture (‘globally accessible’ cues) and cues available to signers only as potentially question marking (‘language-specific’ cues). The category of globally accessible cues included points to the addressee (NGT gloss: you, you-dual) and the palm-up motion, with either or both hands. The category of language-specific cues included lexical signs for information questions (NGT
gloss: how, how-long, why, how-many, question-mark). Details on these signs can be found in Fig. 1.

2.3. Procedure. Upon arrival, participants were taken through the informed consent process with a native NGT signer (signing participants) or a native Dutch speaker (non-signing participants), after which they were briefly interviewed for further information about their language background. Each participant was randomly assigned to see video clips from either the first or the second dyad (they saw the complementary dyad’s turns in a second experiment not reported here). Participants then saw an instruction video in NGT explaining what to expect and how to perform the task (subtitled in Dutch for non-signing participants). The NGT-signing experimenter (signers) or the Dutch speaker (nonsigners) then conversationally checked whether the participant understood the instructions. Participants then tried the task out on the twenty practice trials, after which they consulted with the experimenter once more. If they needed further clarification, they completed the (same) twenty practice trials again. A total of 45% of signing participants and 17% of nonsigning participants opted for a second round of practice before beginning the test trials. Participants then conducted the button-press task with the sixty test trials, and were given the opportunity to take a short break after thirty trials. This experiment took twenty minutes, and was the second of three in the same test session (Casillas et al. 2015), which all together typically took between one and one and a half hours per participant. Participants were compensated with a €20 voucher for their time. Recruitment, informed consent, data collection, and data archiving were all done in accordance with ethical oversight by the Radboud University Ethics Committee, under the research program ‘The structure and development of signed conversations’ (de Vos and Levinson; project code ECG2012-1304-098).

Trial structure. We programmed the experiment so that each button-press trial had the same structure as shown in panel C of Fig. 2. Participants first saw the context video with both signers. This was followed by 500 ms in which they saw only the first frame of the target turn (i.e. a ‘frozen’ view of the target speaker, with the addressee having disappeared)—this cue was used to indicate to participants that the context was over and that they should now focus on predicting the end of the current turn. Then participants saw the target turn. If participants had not pressed the button by the time the target turn ended, the screen froze on the final frame of the target turn for up to two seconds. We added these final two seconds to ensure that our design matched that of de Ruiter et al.’s (2006), which used two seconds of silence after the turn offset in spoken Dutch. These seconds of silence indicated that the turn had ended and gave participants a chance to respond reactively (not anticipatorily) to the turn end, a response more likely when turns are less predictable (Magyari & de Ruiter 2012). In our experiment, participants knew the turn had ended when they saw the final ‘freeze’, and they had up to two seconds to react to this end before the trial terminated automatically. The twenty practice trials and sixty test trials in each experiment were presented in a randomized order for each participant.

2.4. Exclusions. We excluded a total of fourteen participants before conducting any analysis for the following reasons: task misunderstanding ($N = 2$; one early learner, one late learner of NGT), noncompletion of the task ($N = 2$; one early learner, one late learner of NGT), significant motor problems affecting the button-press response ($N = 1$; early learner), lack of NGT fluency ($N = 1$; late learner), nonnative Dutch speaker ($N = 1$; non-signer), and experimenter error ($N = 7$; nonsigners).
Despite our adaptations to the instructions and multiple practice sessions, we noted that a handful of participants found the task instructions rather complicated, which resulted in their giving very early, very late, and/or multiple-press responses that indicated their lack of understanding or the difficulty they faced in executing the task as instructed. We intended to analyze the data under the assumption that all participants understood and were able to reliably execute the task as instructed, so we therefore made further systematic exclusions to remove these cases of participants using unusual button-press responses. Given that our method and its use with this participant community is novel, we have no prior guidelines for which patterns of button press indicate task understanding. Instead, we considered two diagnostic indicators of noncompliance with the task instructions: too-early and too-late button presses. For each indicator, we established an exclusion threshold by examining the distribution of participant responses for a cut-off point between the typical (i.e. distributional peak) and atypical (i.e. long tail) cases (see appendix Figure A3). First, we excluded participants who pressed the button too early—that is, in response to the context videos and therefore even before the target turn had begun. The overwhelming majority of participants made early button presses on two or fewer trials, so we excluded participants who did so on three or more trials (5%+ of the time). This exclusion criterion resulted in the removal of data from twelve participants (five early learners, two late learners, and five nonsigners) who made early responses on an average of 18.3% of test trials (range: 6.7–55%, median = 11.7%). Second, we excluded participants who pressed the button too late—that is, more than 500 ms after the end of the turn. The vast majority of participants made late button presses on five or fewer trials, so we excluded participants who did so on six or more trials (10%+ of the time). We note that late button presses are more likely than early ones, even for participants who can understand and execute the instructions well, because the final freeze is sometimes ambiguous as to whether it is a ‘hold’ by the signer or simply the end of the turn; for this reason, the typical response pattern resulted in a higher threshold for late responses. The late-response exclusion criterion resulted in the removal of data from an additional six participants (one early learner and five nonsigners) who made late responses on an average of 16.7% of test trials (range: 11.7–23.0%, median = 15.8%).

The remaining data therefore included eighty-five participants (twenty-three early learners, twenty-seven late learners, and thirty-five nonsigners). Although this loss of data of thirty-two participants from the 117 originally tested is substantial, it reflects our balance of recruiting a diverse sample of participants while also systematically imposing limits to better ensure that our assumptions about the button-press behavior are adequately met for analyzing the experimental outcomes. In fact, five of the eighteen participants excluded on the basis of the too-late and too-early criteria would have been excluded on both counts, suggesting that our thresholds were effective in identifying divergent response patterns. We also note that the exclusion criteria cumulatively affected a similar number of participants in all three participant groups (early learners, late learners, and nonsigners).

Among the remaining participants’ data, we did a final pass of exclusions for individual trials with uninterpretable responses, including: trials with no response and trials where a response came within the first 720 ms of the stimulus (the minimal time needed

2 It is possible that these participants were treating the stimulus-final freeze as a holding of the turn-final sign, an attested cue for prosodic boundaries and turn transitions in sign (Fenlon et al. 2007, Brentari et al. 2011, Groeber & Pochon-Berger 2014, Girard-Groeber 2015).
for turn-end informative information across our items). We also excluded one item with an unusually long target turn; at 10.28 seconds, it was more than four seconds longer than all other target turns and thus systematically elicited false early responses (other target-turn durations: mean = 2.58, median = 2.28, range = 0.88–6.16 seconds). After these trial- and item-level exclusions, we maintained 94.3% of the verified participant data for analysis.

3. Results. All analyses were conducted in R (R Core Team 2017), with analyses and plots generated using the lme4 and ggplot2 packages (Bates et al. 2015, Wickham 2016). Because this is the first study using an experimental measure of turn-end prediction in sign language, our initial analyses tested whether participants were indeed able, on average, to reliably anticipate the ends of the turns in the stimuli. Our second set of analyses aimed to test whether questions (i.e. a specific type of response-eliciting turn) maintain a privileged status in prediction of upcoming turn structure, and whether such an effect varies depending on the participant’s linguistic background. Our third and final set of analyses aimed to test the role of NGT-specific cues to questionhood in participants’ (timely) anticipations. The high variability in individual cue use across items prevents individual cue analysis in the present study (see appendix Fig. A2). We analyze the likelihood of anticipation in each of these analyses; reaction time alone shows almost no differences between participant groups, likely due to the wide variability in timing within each group (see the analysis scripts linked below for more information). In what follows, we report significant effects from each model; nonsignificant effects are overtly marked as such when mentioned. Full model-output tables can be found in the appendices, and anonymized data and analysis scripts can be found at https://github.com/marisacasillas/NGT-Turn_end_prediction.

3.1. Analysis 1: overall anticipation. Overall, participants responded before the end of the turn (i.e. they anticipated turn ends) 71.7% of the time, with somewhat fewer anticipatory responses for participants with less signing experience (early learners = 75.8%, late learners = 73%, matched nonsigners = 68%); differences between groups in average anticipation rate were minimal. To test whether participants reliably anticipated turn ends, we built a mixed-effects logistic regression for each group with anticipation as a binary dependent variable (1 = pressed the button before the end of the turn, 0 = pressed the button after the end of the turn), including random effects of only participant and item. A positive and significant model intercept in this case indicates that anticipation values are significantly different from zero for that group (i.e. that participants in that group reliably anticipated turn ends). All three participant groups—early learners (β = 1.774, SE = 0.314, z = 5.653, p < 0.001), late learners (β = 1.462, SE = 0.245, z = 5.980, p < 0.001), and matched nonsigners (β = 1.145, SE = 0.250, z = 4.571, p < 0.001)—significantly differed from zero and therefore reliably anticipated turn ends. These regression findings are also found if we instead test each group’s anticipation rate as different from zero in a series of one-tailed t-tests (all p-values < 0.001).

3.2. Analysis 2: question status and language background in anticipation. We next tested whether anticipation was more likely when seeing a question vs. a non-question, and whether this effect varied across participant groups. We first further limited the data to utterances with only a single TCU; that is, we analyzed responses only to utterances with one possible turn end (76.6% of the items in analysis 1; appendix Fig. A2). We introduced this extra limitation for interpretational clarity, given that the button

3 glmer(Anticipation ~ (1|Participant) + (1|Item), data = All.responses.from.a.participant.group, family = binomial)
presses in this subset of the data should theoretically come in anticipation of a single syntactic unit perceivable as a question or nonquestion. Consider, for example, a question turn in which the first TCU is not interrogative (‘It was the day before yesterday, did you go?’). Participants pressing the button in response to the first TCU are responding to a nonquestion unit, while those responding to the turn end make their response to a question. We do not know a priori which TCU end participants were aiming for, so we cannot analyze the item as a question or nonquestion; it is ambiguous with respect to the participant’s response. Note, however, that a model identical to what we present below, only using the entire analysis 1 data set (i.e. both multi- and single-TCU trials), shows weaker but qualitatively similar results (see analysis scripts at the link given above).

We tested effects of question status and participant group with a mixed-effects logistic regression, using anticipation as a binary dependent variable (same as before) and participant group (factorial; early learner/late learner/nonsigner), question status (factorial; question/nonquestion), and their interaction as predictors of interest. We additionally included three fixed effects that may predictably affect response patterns but are not of theoretical interest: duration of the turn (numeric, in seconds), trial number (numeric, to control for any order effects), and signer dyad featured in the stimulus (factorial, A/B). The model also included random effects of participant and item ($N = 3,802$, log likelihood = $−1867.5$).

There was no evidence for significant pairwise differences between participant groups (early learner vs. late learner: $\beta = −0.232, SE = 0.372, z = −0.623, p = 0.533$; early learner vs. nonsigner: $\beta = −0.603, SE = 0.352, z = −1.712, p = 0.087$), but strong evidence for an overall question benefit on anticipation ($\beta = 0.373, SE = 0.140, z = 2.663, p = 0.008$) and significant pairwise interactions between participant group and question status for early learners vs. nonsigners (early learner vs. late learner: $\beta = −0.009, SE = 0.118, z = −0.080, p = 0.936$; early learner vs. nonsigner: $\beta = −0.258, SE = 0.111, z = −2.328, p = 0.020$). The primary outcomes here are illustrated by Figure 3: (i) turn ends were much more likely to be anticipated for questions than for nonquestions overall, (ii) early learners are overall only marginally more likely than nonsigners to anticipate and are statistically indistinguishable from late learners, and (iii) early learners show a significantly larger benefit of question status compared to nonsigners, but are statistically indistinguishable from late learners in question status effects.

To pairwise test the difference between late learners and nonsigners, we ran a second model identical to the first, only now with late learners as the reference level for participant group, and we found that late learners and nonsigners were overall statistically indistinguishable in their anticipation rate ($\beta = −0.371, SE = 0.333, z = −1.113, p = 0.266$), but late learners showed a significantly larger benefit of question status compared to nonsigners ($\beta = −0.249, SE = 0.103, z = −2.402, p = 0.016$). In a nutshell, these analyses find no evidence for difference in anticipation rate between signing groups, but do suggest a difference with nonsigners, particularly with respect to the benefit in anticipation from question-formatted turns.

In addition to these effects of interest, there was a strong positive effect of turn duration: even though all turns in this analysis had only one possible end point (i.e. single-TCU turns; see above), longer turns were still associated with a higher likelihood of

---

4 `glmer(Anticipation ~ Group * Question.status + Turn.duration + Trial.number + Dyad + (1|Participant) + (1|Item), data = Single.endpoint.turns, family = binomial). Note that participant group is treated as a factor in our analysis. As reported, we therefore ran one version of this model with early learners as the reference group (i.e. early vs. late and early vs. nonsigner) and one with late learners as the reference group (i.e. late vs. early and late vs. nonsigner) to fully examine pairwise participant group effects (see the appendices for full model outputs).`
anticipation (\( \beta = 0.476, SE = 0.092, z = 5.185, p < 0.001 \)). There were no significant effects of trial number or signer dyad.

3.3. Analysis 3: Linguistic access in anticipation. In our final set of analyses, we investigated the extent to which some specific cues produced by signers might have supported early button presses for response-eliciting turns. We differentiate between turns that contain any of the lexicalized NGT cues to questionhood presented in Fig. 1 and turns that contain only lexicalized cues that might be apparent to nonsigners as being response-eliciting (i.e. that can be used as response-eliciting Dutch co-speech gestures). We predicted a linguistic advantage in anticipation for the signers only in the first case, the NGT-lexicalized response-elicitation cues. If a turn contained a palm-up gesture or an index-finger second-person pronoun, we considered it to have a salient response-eliciting cue that was available to both signers and nonsigners (hereafter ‘global’ response-elicitation cue; these have lexical status in NGT but are apparent to both groups as response-eliciting). For turns with just these ‘global’ clues to questionhood, we predicted no difference between signers and nonsigners.

To test whether signers maintained an advantage over nonsigners due to linguistic access to cues to questionhood, we first restrict the data to include only trials where at least one lexicalized cue to questionhood was present (see Fig. 1; forty-one items: this subset represents 44.5% of the items in analysis 2). We take this subset approach as a way of running a semicontrolled experiment within our highly variable stimuli; this subset ‘experiment’ tests the proposition that, for turns with at least one lexicalized NGT question cue, signers have a predictive advantage over nonsigners. If so, we expect to see a significant difference between signing and nonsigning participant groups for this part of the data set.5

We analyzed this subset of the data with a mixed-effects logistic regression with anticipation as a binary dependent variable (same as before) and participant group (factorial, early learner/late learner/nonsigner) as the predictor of interest. We additionally included the same three control predictors as before: duration of the turn (numeric, in

---

5 This subset approach is fundamental for our understanding of how individual cues may relate to prediction and participant groups with such a naturalistic, varied collection of stimuli (see appendix Fig. A2). If we instead created a model using all of the items from analysis 2, we would be comparing performance on turns with a specific cue of interest (lexicalized cues to questionhood) with the total grab bag of all other turns, some of which may facilitate anticipation and some of which may impede it due to a variety of other cues and their combinations that we do not track in the present analysis.
seconds), trial number (numeric), and signer dyad featured in the stimulus (factorial, A/B). The model also included random effects of participant and item (N = 1,782, log likelihood = −822.8). There was a significant pairwise effect of participant group between early learners and nonsigners (early learner vs. late learner: $\beta = -0.292, SE = 0.410, z = -0.710, p = 0.477$; early learner vs. nonsigner: $\beta = -0.768, SE = 0.389, z = -1.972, p = 0.049$), in addition to a significant overall effect of turn duration ($\beta = 0.347, SE = 0.149, z = 2.332, p = 0.020$), and no effects of trial number or dyad. We constructed an identical second model, only now again with late learners as the reference group, and found no evidence for a difference between late learners and nonsigners in this subset of the data ($\beta = -0.476, SE = 0.364, z = -1.310, p = 0.190$), though note that their anticipation rate was indistinguishable from that of early learners in the first model, suggesting that their response patterns in this context fall somewhere between those of the other two groups.

To test whether nonsigners showed an equal benefit for global response-eliciting cues, we again use a subsetting approach, this time focusing exclusively on trials where at least one global cue was used, but no sign-specific response-eliciting cue was used (i.e. use of YOU/YOU-DUAL/PALM-UP, but none of the other signs in Fig. 1; thirty-four items; this subset represents 36.9% of the items in analysis 2). In other words, we test the proposition that, for turns with a global cue to questionhood but no sign-specific cue, signers still have an advantage over nonsigners; if so, we expect to see a significant difference between signing and nonsigning participant groups. Model structure was identical to the previous analysis.

There was no significant main effect of participant group (early learner vs. late learner: $\beta = -0.219, SE = 0.367, z = -0.598, p = 0.550$; early learner vs. nonsigner: $\beta = -0.534, SE = 0.347, z = -1.536, p = 0.125$), only a significant effect of turn duration ($\beta = 0.426, SE = 0.091, z = 4.678, p < 0.001$), and no effects of trial number or dyad. We again constructed an identical second model with late learners as the reference group, and found no evidence for a difference between late learners and nonsigners in this subset of the data ($\beta = -0.314, SE = 0.329, z = -0.955, p = 0.339$).

4. Discussion. Our findings reveal (i) that response-eliciting features aid in the recognition of turn type and thus turn ending, regardless of whether the conversation is taking place in a language participants can understand (here, NGT), (ii) that accurate prediction is faster when the turn contains response-eliciting cues (like a question), and (iii) that linguistic access to the unfolding turn nevertheless yields an advantage for cues that are otherwise not salient as cues to an imminent upcoming response. The first finding—that both signers and nonsigners can reliably and accurately predict the upcoming turn ends of unfolding turns—provides further evidence that participants can make accurate real-time judgments about upcoming turn ends even when they do not understand the language being used. This finding is in line with those using participants’ judgments of crosslinguistic turn- and phrase-end identification in signed and spoken conversations (Carlson et al. 2005, Fenlon et al. 2007) and bolsters previous findings from gaze-based measures of response prediction in unfamiliar languages (Casillas & Frank 2017). The second finding—that participants are more likely to make an anticipatory button press during a question turn than a nonquestion turn—is in line with prior observational and experimental work on turn-taking, suggesting that questions lead to a higher likelihood of anticipation and potentially faster responses. Notably, the benefit for questions was

\[^{6}\text{glmer(Anticipation} \sim \text{Group + Turn.duration + Trial.number + Dyad + (1|Participant) + (1|Item), data} = \text{Single.endpoint.turns.with.global.and.or.signspecific.cues, family} = \text{binomial). Note that as before (see analysis 2) we implement two versions of this model, with different reference levels to examine all pairwise participant group effects.}\]
significantly larger for early learners than for nonsigners, suggesting that while questions were sufficiently marked with globally accessible cues for there to be a prediction benefit in both signers and nonsigners, linguistic access to NGT-specific question cues renders an additional advantage. The third finding—that NGT-specific cues result in an anticipatory advantage limited to signers, but that the advantage disappears for globally accessible cues—underscores the fact that participants, be they signers or nonsigners, are highly competent in noting and acting on the response-eliciting cues they have access to during real-time turn-change prediction. Our results accord with Brentari et al.’s (2018) observation that German and American nonsigners alike are able to identify commands and other speech acts on the basis of globally accessible, or universal, cues such as head nods, head tilts, and eye aperture.

This pattern of findings aligns with the interaction engine hypothesis in that we see relatively few differences across groups and see evidence in our third analysis that linguistic differences in prediction derive mainly from cases where globally accessible cues are not present to help the observer. In these contexts, we found only limited evidence for a difference between our early and late signer groups, despite the fact that these two groups represented rather different linguistic profiles with respect to the age of acquisition and input types for NGT; the late learners incorporate linguistic coding of questions into turn-end prediction, but do not statistically pair with either the early learner or the nonsigner group. Late signers therefore may sometimes have rapid access to linguistic question-marking cues, but in other cases rely more heavily on the nonlinguistic, globally accessible cues to turn ending.

Our finding of a benefit for questions in a button-press task also suggests that, across languages, participants may prioritize response-eliciting cues, an effect that can be attributed to their importance for coordinating who speaks next at the (otherwise vulnerable) points for possible floor transition (Sacks et al. 1974, Stivers & Rossano 2010). Together with other evidence gathered on typologically distinct languages, our results support the idea that these basic interactional skills are integral to human communication at large, and thereby are likely to play a major role in shaping the patterns of everyday language use from infancy to adulthood.

While our findings support the idea of a species-wide capacity for interaction that influences the way unfolding turns are processed during conversation, we also see strong evidence for language specificity in those predictive processes. Specifically, we found that NGT signs which have no historical link with co-speech gesture in Dutch were effective in aiding anticipation for signers, but not for nonsigners; this language-specific effect presumably explains the overall greater benefit of question turns for early learners compared to nonsigners. A general hypothesis therefore is that, when cues are language-specific, noniconic, and not otherwise conventionally used, they will lead to specific benefits for fluent users of the language. Otherwise fluent and nonfluent participants will be comparably good at exploiting more globally accessible cues in conversational prediction, even in the context of processing language in real time. A caveat here, though, is that while some globally accessible cues may be universal, others may be culturally specific, for example, where gestures accompanying local spoken languages have been incorporated into proximal sign languages (e.g. Janzen & Shaffer 2002, Pfau & Steinbach 2006, Le Guen 2012, de Vos 2015, Tano & Nyström 2018).

Extending our findings to the prosodic domain is a crucial next step in understanding potential parallels between spoken and signed turn prediction; while lexicosyntactic cues appear crucial for precisely identifying turn ends in spoken language (de Ruiter et al. 2006), prosodic cues may provide critical disambiguating information at potential turn ends (Bögels & Torreira 2015) and may very well contribute to the response-elic-
tation privilege documented in the present study. As in spoken languages, the boundary between linguistically coded aspects of prosody and expressive or gestural aspects is theoretically disputed in sign linguistics. Nevertheless, we note that some prosodic cues in sign (e.g. blinks used to signal turn boundaries in NGT) seem to be more ‘digital’, discrete events than many prosodic cues in spoken language (e.g. intonation contour): blinks, for example, may occur multiple times in a single turn. Moreover, there is evidence, at least in some sign languages, that such signals are consistently used to mark utterance boundaries (Nespor & Sandler 1999, Herrmann 2010). Thus prosody may play a somewhat different role in the on-line prediction of upcoming turn ends and upcoming responses in sign conversation not just because of the discrete nature of these signals, but also because of the consistency with which they appear to be used. That is to say, there may be differences not so much in the kinds of visual signals that play a role in face-to-face interaction in either language modality, but rather in the degree to which such signals have developed grammatical consistency. This typological difference between spoken and signed languages could have major implications for psycholinguistic models of turn prediction and real-time language processing in sign languages, but this requires further investigation. That said, we have not ruled out the possibility that other unexamined properties of the turns with linguistic coding of questions drove early responses for the signers. This potential confound, driven in part by the naturalistic nature of our stimuli, could be systematically investigated using more controlled stimuli in follow-up work.

4.1. Limitations and next steps. Following the 2006 study by de Ruiter et al., we have tried to combine experimental rigor with high levels of ecological validity by using spontaneous NGT dialogue between friends. We also recruited participants from across the NGT community, reaching out to signers and nonsigners who would otherwise be unlikely to participate in a psycholinguistic study because of their limited education, age, linguistic background, and/or location (cf. Henrich et al. 2010). Our study demonstrates that it is possible to gather reliable data on turn-end prediction using a button-press paradigm with both signers and nonsigners, and it mirrors de Ruiter et al.’s (2006) primary finding that lexical cues are important. At the same time, the variable stimuli and diverse participant pool required us to use strict exclusion criteria that resulted in substantial data loss. Future work can build on these strengths and weaknesses by combining our general experimental approach with more controlled linguistic stimuli. For example, further studies on turn prediction in NGT could use the button-press method as altered by Bögels and Torreira (2015) to test whether NGT signers (and nonsigners) are similarly sensitive to prosodic cues at points of possible turn completion (e.g. by manipulating prosodic cues such as blinks and brow movements while keeping lexicosyntactic information identical). Manipulating specific cues in sign would, however, require advanced methodology such as video manipulation or the use of sign language avatars (cf. Wolfe et al. 2011). Further, the controlled nature of our experiment and the scope of our current research questions limit our insight into other factors that may facilitate prediction in real signed interaction, including linguistic and processing advantages that could make differences between signing and nonsigning participants more apparent (e.g. in making predictions during multiparty conversation, in making content-specific predictions, and in integrating subtle contextual cues to make accurate predictions earlier on). Future work can follow up on these questions with a combination of corpus study and further experimentation along the lines we present here. The use of scripted stimuli or carefully selected cue-specific stimuli from naturalistic conversation in future work would also help to overcome naturalistic variability that, in the present study, resulted in our focus on groups
of cues rather than individual cues relating to prediction. In any case, we hope that this study will contribute to a line of research exploring the similarities and differences in both the cue types and timelines of spoken and signed languages in their natural ecologies (cf. Hosemann et al. 2013, Sehyr et al. 2020).

4.2. Conclusions. We asked NGT signers and nonsigning Dutch speakers to predict the ends of unfolding turns extracted from spontaneous conversation in NGT. We found that signers and nonsigners alike were able to reliably anticipate upcoming turn ends. We also found that both groups were more likely to anticipate turn ends when the unfolding turn was a question, but that this advantage was greater for early learners of NGT than for nonsigners. When we looked more closely at the use of language-specific and globally accessible cues to questionhood, we found that signers were significantly more likely to benefit from the language-specific cues in making their predictions, but that both groups benefited equally from globally accessible cues. Our findings support the idea that participants, whether or not they have access to the language, predict upcoming turn ends and track both linguistic and nonlinguistic cues that may aid in that prediction; meanwhile, linguistic cues still provide an advantage over and above globally accessible ones.

The current findings demonstrate that the ability to accurately predict upcoming turn structure extends across language modalities and can even be implemented, to some extent, without linguistic cues, underscoring the idea that our capacity for language is first and foremost grounded in our ability to predict and produce relevant social actions (Levinson 2006). While linguistic cues offer us an answer to the query of how the turn-taking system manages to be both consistently fast and consistently precise (Levinson & Torreira 2015), multimodal accounts of turn-taking may offer critical insights into communicative resources that can be used to coordinate interaction across interactants who do not share a language, including infant-caregiver interactions (Casillas & Hilbring 2020), cross-signing between deaf individuals who do not know a common signed language (Byun et al. 2018), translanguaging between speakers and signers of distinct languages (Kusters et al. 2017), and even more recently, the study of homesign interactions between deaf people and their hearing relatives in the absence of conventional language input (Haviland 2020). The basic communicative resources and abilities that feature in these interactions may help us understand the foundations of human conversational interaction and therefore may shed light on the evolutionary processes by which language came to be.

APPENDIX

We here provide: full output for all statistical models reported in the main text (Tables A1–A9) and a collection of supplementary figures illustrating spread in participant demographics, target-turn properties, and response patterns.

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>1.7739</td>
<td>0.3138</td>
<td>5.653</td>
<td>1.58e-08 ***</td>
</tr>
</tbody>
</table>

Table A1. Model output for mixed-effects logistic regression of overall anticipation within the early learner group (N = 1,378, AIC = 1274.4, BIC = 1290.1, log likelihood = −634.2).

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>1.4623</td>
<td>0.2446</td>
<td>5.98</td>
<td>2.24e-09 ***</td>
</tr>
</tbody>
</table>

Table A2. Model output for mixed-effects logistic regression of overall anticipation within the late learner group (N = 1,617, AIC = 1571.9, BIC = 1588.1, log likelihood = −783.0).

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>1.4623</td>
<td>0.2446</td>
<td>5.98</td>
<td>2.24e-09 ***</td>
</tr>
</tbody>
</table>

Table A3. Model output for mixed-effects logistic regression of overall anticipation within the matched nonsigner group (N = 2,099, AIC = 2130.0, BIC = 2146.9, log likelihood = −1062.0).
### Table A4. Model output for mixed-effects logistic regression of anticipation given participant group, question status, and control predictors, with early learners as the reference level for group

(N = 3,802, AIC = 3757.0, BIC = 3825.6, log likelihood = 3735.0).

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>0.522160</td>
<td>0.370508</td>
<td>1.409</td>
<td>0.15874</td>
</tr>
<tr>
<td>Group = LateLearners</td>
<td>-0.232030</td>
<td>0.372181</td>
<td>-0.623</td>
<td>0.53300</td>
</tr>
<tr>
<td>Group = Nonsigners</td>
<td>-0.603115</td>
<td>0.352376</td>
<td>-1.712</td>
<td>0.08698</td>
</tr>
<tr>
<td>IsQuestion</td>
<td>0.373459</td>
<td>0.140230</td>
<td>2.663</td>
<td>0.00774 **</td>
</tr>
<tr>
<td>DurationSec</td>
<td>0.476042</td>
<td>0.091807</td>
<td>5.185</td>
<td>2.16e-07 ***</td>
</tr>
<tr>
<td>Order</td>
<td>-0.159351</td>
<td>0.148224</td>
<td>-1.075</td>
<td>0.28234</td>
</tr>
<tr>
<td>SignDyad</td>
<td>0.062194</td>
<td>0.175269</td>
<td>0.355</td>
<td>0.72270</td>
</tr>
<tr>
<td>Group = LateLearners * IsQuestion</td>
<td>-0.009457</td>
<td>0.118496</td>
<td>-0.080</td>
<td>0.93639</td>
</tr>
<tr>
<td>Group = Nonsigners * IsQuestion</td>
<td>-0.258092</td>
<td>0.110847</td>
<td>-2.328</td>
<td>0.01989 *</td>
</tr>
</tbody>
</table>

### Table A5. Model output for mixed-effects logistic regression of anticipation given participant group, question status, and control predictors, with late learners as the reference level for group

(N = 3,802, AIC = 3757.0, BIC = 3825.6, log likelihood = 3735.0).

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>0.290130</td>
<td>0.352098</td>
<td>0.824</td>
<td>0.40994</td>
</tr>
<tr>
<td>Group = LateLearners</td>
<td>0.232037</td>
<td>0.372233</td>
<td>0.623</td>
<td>0.53304</td>
</tr>
<tr>
<td>Group = Nonsigners</td>
<td>-0.371083</td>
<td>0.333437</td>
<td>-1.113</td>
<td>0.26575</td>
</tr>
<tr>
<td>IsQuestion</td>
<td>0.364002</td>
<td>0.134329</td>
<td>2.710</td>
<td>0.00673 **</td>
</tr>
<tr>
<td>DurationSec</td>
<td>0.476042</td>
<td>0.091809</td>
<td>5.185</td>
<td>2.16e-07 ***</td>
</tr>
<tr>
<td>Order</td>
<td>-0.159351</td>
<td>0.148228</td>
<td>-1.075</td>
<td>0.28235</td>
</tr>
<tr>
<td>SignDyad</td>
<td>0.062194</td>
<td>0.175271</td>
<td>0.355</td>
<td>0.72271</td>
</tr>
<tr>
<td>Group = LateLearners * IsQuestion</td>
<td>0.009457</td>
<td>0.118498</td>
<td>0.080</td>
<td>0.93639</td>
</tr>
<tr>
<td>Group = Nonsigners * IsQuestion</td>
<td>-0.248636</td>
<td>0.103512</td>
<td>-2.402</td>
<td>0.01631 *</td>
</tr>
</tbody>
</table>

### Table A6. Model output for mixed-effects logistic regression of anticipation of turns with at least one sign-specific cue to transition, given participant group and control predictors, with early learners as the reference level for group

(N = 1,782, AIC = 1661.6, BIC = 1705.5, log likelihood = –822.8).

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>1.16587</td>
<td>0.53408</td>
<td>2.183</td>
<td>0.0290 *</td>
</tr>
<tr>
<td>Group = LateLearners</td>
<td>-0.29160</td>
<td>0.41050</td>
<td>-0.710</td>
<td>0.4775</td>
</tr>
<tr>
<td>Group = Nonsigners</td>
<td>-0.76805</td>
<td>0.38952</td>
<td>-1.972</td>
<td>0.0486 *</td>
</tr>
<tr>
<td>DurationSec</td>
<td>0.34756</td>
<td>0.14903</td>
<td>2.332</td>
<td>0.0197 *</td>
</tr>
<tr>
<td>Order</td>
<td>-0.10993</td>
<td>0.23212</td>
<td>-0.474</td>
<td>0.6358</td>
</tr>
<tr>
<td>SignDyad</td>
<td>-0.07622</td>
<td>0.26318</td>
<td>-0.290</td>
<td>0.7721</td>
</tr>
</tbody>
</table>

### Table A7. Model output for mixed-effects logistic regression of anticipation of turns with at least one sign-specific cue to transition, given participant group and control predictors, with late learners as the reference level for group

(N = 1,782, AIC = 1661.6, BIC = 1705.5, log likelihood = –822.8).

<table>
<thead>
<tr>
<th>FIXED EFFECT</th>
<th>EST</th>
<th>SE</th>
<th>z-VALUE</th>
<th>p-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(intercept)</td>
<td>0.87427</td>
<td>0.51262</td>
<td>1.705</td>
<td>0.0881</td>
</tr>
<tr>
<td>Group = LateLearners</td>
<td>0.29160</td>
<td>0.41050</td>
<td>0.710</td>
<td>0.4775</td>
</tr>
<tr>
<td>Group = Nonsigners</td>
<td>-0.47645</td>
<td>0.36372</td>
<td>-1.310</td>
<td>0.1902</td>
</tr>
<tr>
<td>DurationSec</td>
<td>0.34756</td>
<td>0.14903</td>
<td>2.332</td>
<td>0.0197 *</td>
</tr>
<tr>
<td>Order</td>
<td>-0.10993</td>
<td>0.23212</td>
<td>-0.474</td>
<td>0.6358</td>
</tr>
<tr>
<td>SignDyad</td>
<td>-0.07622</td>
<td>0.26318</td>
<td>-0.290</td>
<td>0.7721</td>
</tr>
</tbody>
</table>

### Table A8. Model output for mixed-effects logistic regression of anticipation of turns with at least one global cue to transition but no sign-specific cues, given participant group and control predictors, with early learners as the reference level for group

(N = 3,696, AIC = 3669.1, BIC = 3718.8, log likelihood = –1826.6).
Table A9. Model output for mixed-effects logistic regression of anticipation of turns with at least one global cue to transition but no sign-specific cues, given participant group and control predictors, with late learners as the reference level for group ($N = 3,696$, $AIC = 3669.1$, $BIC = 3718.8$, log likelihood = $-1826.6$).

<table>
<thead>
<tr>
<th>Fixed Effect</th>
<th>EST</th>
<th>SE</th>
<th>Z-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.30333</td>
<td>0.35439</td>
<td>0.856</td>
<td>0.392</td>
</tr>
<tr>
<td>Group = LateLearners</td>
<td>0.21938</td>
<td>0.36693</td>
<td>0.598</td>
<td>0.550</td>
</tr>
<tr>
<td>Group = Nonsigners</td>
<td>-0.31428</td>
<td>0.32900</td>
<td>-0.955</td>
<td>0.339</td>
</tr>
<tr>
<td>DurationSec</td>
<td>0.42637</td>
<td>0.091</td>
<td>4.678</td>
<td>2.9e-06 ***</td>
</tr>
<tr>
<td>Order</td>
<td>-0.16598</td>
<td>0.14970</td>
<td>-1.109</td>
<td>0.268</td>
</tr>
<tr>
<td>SignDyad</td>
<td>0.09770</td>
<td>0.17692</td>
<td>0.552</td>
<td>0.581</td>
</tr>
</tbody>
</table>

Figure A1. Demographic overview of the present participant sample. (a) Number of participants by age ($x$-axis) and education level ($y$-axis); darker tile color indicates more participants for that age and education-level combination. Participants are split into men (left) and women (right) and by signer (top row) and nonsigner (bottom row) categories. Levels of education, using standard Dutch abbreviations, are defined as follows: 1: LBO/LHNO or (V)MBO (vocational training) or Other; 2: MAO/HAVO/VWO (high school); 3: HBO/bachelor (bachelor’s degree). (b) More detailed demographic information for the signing participant group, including: top: number of participants by age ($x$-axis), education level ($y$-axis), gender (men: first and third panels from the left; women: second and fourth panels from the left), and learner group (early exposure: left two grids, later exposure: right two grids); bottom-left: type of linguistic input (color) by learner group (early exposure: left graph, later exposure: right graph) and auditory status (deaf: upper row, hearing: lower row); bottom-right: distributions of age of onset for exposure to NGT by learner group (early exposure: light, later exposure: dark), showing group means (solid line) and medians (dashed line).
Figure A2. Detailed overview of annotated linguistic characteristics of each target turn. Single-unit turns are shown on the left and multi-unit turns on the right. Each turn is labeled by the signer dyad featured (MM or YR) and item number. For each turn, the following linguistic features are shown (in left-to-right order): duration (in seconds; darker = longer; numeric value shown in each cell); utterance type (shaded = polar/WH/alternative question; white = declarative); for all of the following features, shaded = yes, white = no: ‘NGT-only’ question marker (regarding use of a question marker that is not conventionally associated with questions in Dutch); ‘NGT & Dutch’ manual question marker (regarding use of a manual question marker that is conventionally associated with questions in Dutch); brow raise used; brow frowning/furrowing used; head tilt used; blink used; backchannel used; nonmanual prosodic cue used; manual prosodic cue used; and tag marker used.
Figure A3. Distribution of button behaviors used to make participant exclusions. Left: Number of participants displaying different rates of pressing the button during the context videos; we excluded participants who pressed the button during three or more test trials (i.e. all twelve participants represented to the right of the 5% vertical line), the clear point of separation between the main group of participants and the long tail of outliers. Cut-off points at 10% and 15% of test trials are also shown for reference (dashed and dotted vertical lines). Right: Number of participants displaying different rates of pressing the button very late during the target videos; we excluded participants who pressed the button late on six or more test trials (i.e. all six participants represented to the right of the 10% vertical line), the point of separation between the main group of participants and the long tail of outliers. Cut-off points at 15% and 20% of test trials are also shown for reference (dashed and dotted vertical lines).

REFERENCES


Crasborn, Onno A.; Els van der Kooij; and Johan Ros. 2012. On the weight of phrase-final prosodic words in a sign language. *Sign Language & Linguistics* 15.11–38. DOI: 10.1075/sll.15.1.02cra.


Hosemann, Jana; Annika Herrmann; Markus Steinbach; Ina Bornkessel-Schlesewsky; and Matthias Schlesewsky. 2013. Lexical prediction via forward models: N400 evidence from German Sign Language. *Neuropsychologia* 51.2224–37. DOI: 10 .1016/j.neuropsychologia.2013.07.013.


Lammertink, Imme; Marisa Casillas; Titia Benders; Brechtje Post; and Paula Fikkert. 2015. Dutch and English toddlers’ use of linguistic cues in predicting upcoming turn transitions. *Frontiers in Psychology* 6:495. DOI: 10.3389/fpsyg.2015.00495.
LATIF, NIDA; AGNÈS ALSIUS; and K. G. MUNHALL. 2018. Knowing when to respond: The role of visual information in conversational turn exchanges. *Attention, Perception, & Psychophysics* 80.27–41. DOI: 10.3758/s13414-017-1428-0.


Stivers, Tanya; N. J. Enfield; Penelope Brown; Christina Englert; Makoto Hayashi; Trine Heinemann; Gertie Hoymann; Federico Rossano; Jan P. de Ruiter; Kyung-Eun Yoon; and Stephen C. Levinson. 2009. Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Sciences 106.10587–92. DOI: 10.1073/pnas.0903616106.


