WHEN PARSING AND INTERPRETATION MISALIGN: A CASE OF WH-SCOPE AMBIGUITY IN MANDARIN

Ming Xiang Zhewei Dai Suiping Wang
The University of Chicago Alma College South China Normal University

A large amount of sentence-processing work has focused on revealing how the parser incrementally integrates each incoming word into the current linguistic representation. It is often explicitly or implicitly assumed that the structure endorsed by the parser should determine the ultimate interpretation of the sentence. The current study investigates whether the interpretive bias in sentence comprehension necessarily tracks the parsing bias. Our case study concerns the locality bias in nonlocal dependencies, specifically Mandarin wh-in-situ scope dependencies. Our findings suggest a misalignment between parsing and interpretative decisions at the global level. In particular, for Mandarin wh-in-situ constructions that involve scope ambiguity, there is a locality bias in parsing, but an antilocality bias in interpretation. Building upon the rational speech act framework, we propose a Bayesian pragmatic analysis to account for these findings. Under our proposal, the seeming conflict between parsing and interpretation will ultimately disappear because parsing preferences will be naturally embedded under the pragmatic reasoning process to generate the ultimate interpretation. The current study therefore makes novel contributions, both empirically and theoretically, to addressing the broader question about the relationship between parsing and interpretation.*

Keywords: parsing, sentence comprehension, Bayesian pragmatic reasoning, long-distance dependencies, locality effect, Chinese wh-in-situ

1. Introduction. Sentence comprehension requires a parser that establishes the structural representation of the to-be-interpreted sentence. A great amount of sentence-processing work has focused on revealing how the parser incrementally integrates each incoming word into the current grammatical representation. As for the mapping between structure and interpretation, it is often explicitly or implicitly assumed that the structure endorsed by the parser should determine the ultimate interpretation of the sentence. This seemingly simple mapping between parsing and interpretation, however, faces challenges from observations showing that the interpretations comprehenders obtain can sometimes deviate from what the grammatical parse allows. A salient case of this comes from sentences containing temporary garden-path ambiguities (e.g., Christianson et al. 2001, Qian et al. 2018). For example, Christianson et al. (2001) examined people’s interpretation of the temporarily ambiguous but globally unambiguous sentence *While Anna dressed the baby that was cute and cuddly played in the crib* when participants were asked ‘Did Anna dress the baby?’, the majority of the responses were ‘yes’, even though this interpretation is incompatible with the grammatical parse at the global level. Misinterpretations also arise for ‘local coherence’ sentences such as *The coach smiled at the player tossed the frisbee* (Tabor et al. 2004, Konieczny et al. 2009), resulting in an interpretation that the player tossed the frisbee, when the grammatically licensed interpretation is that someone else tossed the frisbee to the player. It has also been found that for relatively infrequent constructions or sentences with noncanonical word orders, such as passives or object clefts, misinterpretation may happen when the grammatically licensed interpretation is implausible (Ferreira 2003).

* This material is based on work supported by the National Science Foundation under Grant No. BCS1451635 and by the University of Chicago Humanities Division Council. We would like to thank Whitney Tabor, two anonymous referees, and editors of *Language* John Beavers and Ezra Keshet for their constructive feedback. Their comments greatly improved this work. All remaining errors are due to the authors. Data and code are available at https://osf.io/mwtkj/.

Printed with the permission of Ming Xiang, Zhewei Dai, & Suiping Wang. © 2023.
Different proposals have been put forward to deal with the attested mismatches between parsing and interpretation. For example, the good-enough approach to comprehension (Christianson et al. 2001, Ferreira et al. 2001, Ferreira et al. 2002, Ferreira & Patson 2007) explains such findings by allowing interpretations to be derived through simple heuristics (e.g. world knowledge, word order, etc.) rather than fully specified structural parses. The noisy-channel account (Levy 2008b, Gibson et al. 2013), by contrast, accounts for the empirical findings by introducing noise or uncertainty to the linguistic input a comprehender perceives.

The current study has two goals, one empirical and the other theoretical. First, we identify a new empirical case, unrelated to the previous observations discussed above, that also demonstrates (descriptively speaking) a misalignment between parsing and interpretation. Our case study concerns a particular kind of structural ambiguity, the wh-scope ambiguity in Mandarin wh-in-situ constructions. There is a large body of previous work on structural-ambiguity resolution (e.g. Frazier & Fodor 1978, Cuetos & Mitchell 1988, MacDonald et al. 1994, Van Gompel et al. 2000). The primary research goal in this literature has been to understand the parsing biases of structurally ambiguous sentences and to also explain the sources of such parsing biases. The primary question of the current study is different. Our empirical focus is not just the parsing bias itself, but more importantly the misalignment between the parsing bias and the interpretation bias. Theoretically, our proposal for the current empirical findings offers a new kind of analytical possibility to address the more general question about the relationship between parsing and interpretation. Specifically, we propose a Bayesian account that integrates parsing information with pragmatic reasoning in order to predict quantitative results on interpretation. Our Bayesian account is built upon the rational speech act framework (Goodman & Frank 2016). Under our account, the seeming mismatch between parsing and interpretation will ultimately disappear, since parsing preferences are integrated into a general pragmatic reasoning process to derive the ultimate interpretation.

Our study examines the locality effect in wh-in-situ constructions that show scope ambiguity. More details about the wh-in-situ constructions are introduced in the next section, but generally speaking, locality bias is commonly observed in sentence parsing. A representative example of this is the well-documented distance effect in processing nonlocal dependencies. In constructions that involve nonlocal dependencies, such as English relative clauses or wh-questions, it is often observed that greater distance between the two elements on a dependency chain increases processing difficulty, as measured by decreased acceptability judgments, increased reading time, or enhanced neurophysiological responses (Gibson 1998, Warren & Gibson 2002, Van Dyke & Lewis 2003, Lewis & Vainsht 2005). As an example, consider 1 from Alexopoulou and Keller (2007). In their results, as the distance between the verb fire and its fronted wh-argument who increased from 1a to 1c, the acceptability rating decreased accordingly.

(1) a. Who will we fire?
 b. Who does Mary claim we will fire?
 c. Who does Jane think Mary claims we will fire?

A shorter dependency is generally preferred to longer ones, hence the locality bias. Many accounts of this effect are based on hypotheses about how working memory is structured and deployed to support language comprehension. For example, in dependency locality theory (Gibson 1998, 2000), the processing cost for completing a dependency is a function of the number of discourse referents between the two elements.
on a dependency chain. Under the memory-retrieval account (Lewis & Vasishth 2005), processing cost is in large part determined by how quickly and unambiguously the relevant dependent element can be retrieved from working memory, among all other memory representations that could potentially introduce interference. Longer dependencies are more likely to introduce elements that can interfere with the retrieval target, leading to an increased processing cost.

Taking advantage of the well-established parsing preference for shorter dependencies, the current study examines people’s interpretation of scope-ambiguous sentences in the presence of clear locality parsing bias. In §2, we establish the empirical generalization that even though the shorter scope dependency is the preferred structural parse over the longer one, consistent with the broader conclusion about locality bias in parsing, the interpretation obtained by the comprehenders nonetheless aligns with the longer scope dependency. To account for this, we develop a proposal in §3 and §4 that integrates parsing biases with Bayesian pragmatic reasoning. We discuss the implications and remaining questions of the current proposal in §5.

(2) 记者们 知道 [CP1 市长 严惩了 哪些 官员。] jizhemen zhidao shizhang yancheng-le naxie guanyuan reporter know mayor punish-prf which official

‘The reporters knew which officials the mayor punished.’

The example in 2 presents an embedded wh-question: the wh-element ‘which officials’ takes scope over the embedded clause. Despite the lack of overt cues signaling a nonlocal dependency, processing evidence from Xiang et al. 2015 and Xiang & Wang 2020 showed that the incremental construction of a wh-in-situ dependency is constrained by the same parsing principles that regulate the processing of overt nonlocal dependencies.

More important for the current purpose, based on experimental evidence, Xiang and Wang (2020) argued that when there is scope ambiguity for a wh-in-situ element, the local scope dependency (low scope) is less costly than the nonlocal dependency (high scope), essentially illustrating a locality bias like their overt-dependency kin in English. This conclusion is largely based on a comparison between two types of sentences, as shown by the examples in 3.

(3) a. 记者们 知道 [CP1 市长 透露了 [CP2 市政府 严惩了 哪些 官员。]] jizhemen zhidao shizhang toulu-le shizhengfu yancheng-le reporter know mayor reveal-prf city.council punish-prf naxie guanyuan which official

‘The reporters knew which officials the mayor revealed that the city council punished.’ or

‘The reporters knew that the mayor revealed which officials the city council punished.’
The reporters knew which officials the mayor believed that the city council punished.

The sentence in 3a is ambiguous since the wh-in-situ item could take either high scope over clause 1 (cp1) or low scope over clause 2 (cp2). The low scope—that is, the local scope dependency that associates the wh-item with a scope position at the left edge of clause 2—was argued by Xiang et al. to be preferred over the high scope. The critical argument for this conclusion comes from a comparison between 3a and 3b. The two sentences are almost identical, except that the lower verb ‘believe’ in 3b is lexically constrained such that it does not allow an embedded interrogative clause as its complement. Such a subcategorization constraint on verbs is well known in the literature (Ginzburg 1995), and we give some examples of verbs with distinct subcategorization properties in 4. Verbs like know or reveal allow either interrogative or declarative complement clauses to be embedded, as shown in 4a and 4b. But verbs like believe or think allow only embedded declarative clauses, as shown by the contrast in 4c and 4d.

b. John knew/revealed Mary wrote that book.
c. *John believed/thought who wrote that book.
d. John believed/thought Mary wrote that book.

Given the verb difference between 3a and 3b, one important consequence is that the low-scope dependency in 3b is blocked. Xiang and Wang (2020) argued that sentences like 3b show substantial parsing difficulty because the low-scope dependency is preferred but blocked, resulting in a much lower acceptability rating for 3b than for 3a. One may ask whether the low acceptability of the high-scope-only 3b is indeed due to the unavailability of the low-scope dependency, rather than to the fact that 3a is scope-ambiguous and could have benefited from an ambiguity advantage effect (e.g. Traxler et al. 1998). The critical observation that argues against the ambiguity advantage explanation is that if one switches the position of the verbs ‘know’ and ‘reveal’ in 3a, as well as the position of the verbs ‘know’ and ‘believe’ in 3b, the previously observed acceptability differences between the two conditions disappear. The two relevant conditions are shown in 5.

(5) a. The reporters revealed which officials the mayor knew that the city council punished.
 ‘The reporters revealed which officials the mayor knew that the city council punished.’
 (high scope)
 (unavailable): ‘The reporters revealed which officials the mayor knew that the city council punished.’
 (low scope)
b. 记者们相信 [CP1 市长 知道 [CP2 市政府 严惩了
reporter believe [CP1 mayor know [CP2 city.council punish-PRF
哪些-官员。]]
which.ct.-official
(nunavailable): ‘The reporters believed which officials the mayor knew
that the city council punished.’ (high scope, blocked)
‘The reporters believed that the mayor knew which officials the city
council punished.’ (low scope)

Parallel to 3a and 3b, 5a is scope-ambiguous and 5b is not. But the unambiguous 5b,
critically different from the unambiguous 3b, has only the low-scope parse, since the
high scope is blocked by the matrix verb ‘believe’. There is no acceptability difference
between 5a and 5b, in contrast to the acceptability difference between 3a and 3b.1 This
contrast lends strong support to the conclusion that there is a locality bias in parsing.
Whenever a local dependency is available, it is relatively easy for the parser to success-
fully establish a syntactic parse, as in the case of 3a, 5a, and 5b; but when the local de-
dependency is blocked, as in 3b, the parser encounters a greater degree of parsing
difficulty. The alternative account based on an ambiguity advantage effect, by contrast,
would make the wrong prediction that the ambiguous 5a should be rated much higher
than the unambiguous 5b.

Building upon the observation that when there is scope ambiguity for \textit{wh}-in-situ ex-
pressions, there is a strong preference for the local-scope parse, the main empirical
question of the current study is to identify the interpretation bias people have for scope-
ambiguous \textit{wh}-constructions. To start with, if interpretation bias tracks parsing bias,
one reasonable hypothesis is that the scope ambiguity should ultimately be resolved to
favor interpretations supported by the local scope dependency. We test this possibility
in experiment 1 using a truth-value judgment task.

2.2. Experiment 1: scope interpretation bias—a truth-value judgment task.
In this experiment, participants were presented with a sentence containing a \textit{wh}-in-situ
expression. The target sentence by itself can have different interpretations, depending on
whether it is parsed as having a low-scope (local) dependency or a high-scope depen-
dency. Prior to the target sentence, participants were also presented with a context sce-
nario that was compatible with the interpretation of only one of the parses. They were
instructed to judge whether the target sentence fits the context. Their judgments, there-
fore, can provide us with some evidence about which scope dependency they have com-
mitted to. Consider the target sentence in 6.

1 Based on the binary yes/no acceptability judgments reported in Xiang & Wang 2020 (experiment 2), sen-
tences like 3a and 3b were rated on average at 0.7 and 0.3, and sentences like 5a and 5b were rated on average
at 0.71 and 0.67.
When the high-scope reading is true, the sentence can be roughly paraphrased as ‘Emily announced the answer to the question “Which city did Emily’s team discover the aliens established?”’. This reading entails that Emily revealed the identity of the city. Suppose the answer to the embedded question is ‘Rome’: the high-scope reading then means that Emily revealed that her team discovered that the aliens established Rome. The low-scope reading, by contrast, can be paraphrased as ‘Emily announced that her team discovered which city the aliens established.’. This reading, crucially, does not necessarily entail that Emily revealed the identity of the city. This interpretation difference between the high- and low-scope dependencies plays an important role in our experiment below.

Material, participants, and procedure. We constructed four different conditions; an example is shown in 7 below. These conditions share the same context scenario, but differ from each other in the target sentences. Participants were instructed to judge whether the meaning of the target sentence matches or does not match the context scenario. For convenience, we refer to the task as a truth-value judgment task, and code the ‘matches’ and ‘does not match’ responses as true and false judgments, respectively.

The first condition, 7a, has a target sentence like 6. The preceding context makes the high-scope construal true and the low-scope construal false for the target sentence. To counterbalance the association between the true/false judgments and the high/low-scope construals of the target sentences, we modified the matrix predicate in 7a to create the condition in 7b. In 7b, the matrix verb is an antonym of the positive matrix predicate in 7a. We labeled the condition in 7b ‘matrix verb negative’. For the majority of the stimuli items (twelve of sixteen), the antonym verb in condition 7b happened to be formed by adding an overt negation marker to the positive predicate. The context for 7b is identical to that of 7a, but because the matrix verbs in these two conditions are antonyms, we expect the judgments provided for the target sentence to be opposite. In this way we counterbalanced the association between the true/false judgments and the high/low-scope construals of the target sentences. In addition to the two ambiguous conditions in 7a and 7b, we also included unambiguous target sentences as control comparison conditions (see 7c and 7d). For the control conditions, only the high-scope reading is grammatically available, because the lower embedding verb, such as ‘believe’, blocks the low-scope dependency. The unambiguous target sentences were preceded by the same context used for the ambiguous conditions, resulting in the judgment ‘false’ for 7c and ‘true’ for 7d.

(7) Context: At a recent archaeology conference, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. But she kept the name of the city a secret. (Mandarin: 在最近的一次考古界的学术会议上，艾米丽说她的团队找到了证据证实某一个有名的古城市其实是外星人建造的。但目前她对这个城市的名称保密。)
Target sentence:
a. Ambiguous; Matrix verb positive
艾米丽 公布了 她的团队 发现了 外星人
Emily announce-PRF her team discover-PRF aliens
建造了 哪座城市。]
jianzao-le na-zuo chengshi
establish-PRF which-cl city
High scope: ‘Emily announced which city her team discovered that aliens established.’ (false)
Low scope: ‘Emily announced that her team discovered which city the aliens established.’ (true)
b. Ambiguous; Matrix verb negative
艾米丽 隐瞒了 她的团队 发现了 外星人
Emily conceal-PRF her team discover-PRF aliens
建造了 哪座城市。]
jianzao-le na-zuo chengshi
establish-PRF which-cl city
High scope: ‘Emily concealed which city her team discovered that aliens established.’ (true)
Low scope: ‘Emily concealed that her team discovered which city the aliens established.’ (unavailable)
c. Unambiguous; Matrix verb positive
艾米丽 公布了 她的团队 相信 外星人
Emily announce-PRF her team believe aliens
建造了 哪座城市。]
jianzao-le na-zuo chengshi
establish-PRF which-cl city
High scope: ‘Emily announced which city her team believed that aliens established.’ (false)
Low scope: ‘Emily announced that her team believed which city the aliens established.’ (unavailable)
d. Unambiguous; Matrix verb negative
艾米丽 隐瞒了 她的团队 相信 外星人
Emily conceal-PRF her team believe aliens
建造了 哪座城市。]
jianzao-le na-zuo chengshi
establish-PRF which-cl city
High scope: ‘Emily concealed which city her team believed that aliens established.’ (true)
Low scope: ‘Emily concealed that her team believed which city the aliens established.’ (unavailable)

We constructed a total of sixteen sets of four-condition items like 7a–d. The experiment was conducted on IbexFarm (Drummond 2016). For each trial, participants first viewed a context scenario, and then they pressed the space bar to view the target sentence on the next screen. They could not go back to view the context scenario from the target sentence screen. During the practice trials, between the context scenario and the
target sentence there was an instruction sentence saying, ‘You will next read a sentence. Please decide whether the meaning of that sentence matches or does not match the context scenario you just saw above’. Participants were instructed to decide by choosing between two buttons presented to them on the screen. The sixteen sets of experimental items were distributed to the participants in a Latin square design, such that each participant saw only one condition from each item set. We also included ten additional filler trials. The filler trials had the same format as the experimental trials, and five of them should be judged as true, and the other five as false. Ninety-eight native Mandarin speakers participated in our study, ten of whom were excluded from the analysis because their response accuracy on the filler trials was less than 60%. We report the results from the remaining eighty-eight participants below.

Results. We first converted participants’ truth-value judgments into whether they interpreted the target sentence with a high-scope construal. For example, for 7a, a response of ‘does not match/false’ was converted to ‘high scope’; and for 7b, a response of ‘matches/true’ was converted to ‘high scope’. The proportion of high-scope choices is plotted in Figure 1. There are more high-scope responses for the unambiguous conditions (79% for the positive predicate condition and 77% for the negative predicate condition) than for the ambiguous conditions (mixed-effects logistic model: $\text{est} = -0.21 \pm 0.08, z = -2.58, p < 0.01$). This is unsurprising, given that the unambiguous conditions can be parsed as having only a high scope for the wh-expressions. It is worth noting, however, that the proportions of high-scope choices for unambiguously high-scope sentences like 7c and 7d are not at ceiling.

As we show in experiment 2 below, the unambiguous conditions tested here are syntactically complex and received very low acceptability ratings. The severe parsing difficulty in the unambiguous conditions may sometimes have led to inaccurate interpretation. But we note that the primary interest of the current study is to explain the interpretation bias for the ambiguous conditions, and the interpretation of the unambiguous conditions does not play a major role for the main purpose of the article. The more important finding from experiment 1 is that the two ambiguous conditions received overwhelmingly more high-scope responses than low-scope responses: 73% for both the positive and the negative predicate conditions, significantly higher than the 50% chance level ($p_s < 0.0001$).

Discussion of experiment 1. Results from the truth-value judgment task in experiment 1 provide strong evidence that participants are predominantly biased toward interpreting an ambiguous wh-in-situ construction as having a high-scope reading. This finding is incompatible with the simple hypothesis that interpretation bias always tracks the parsing bias. As discussed in §1, there are good reasons to believe that from a parsing perspective, the local scope dependency (i.e. low scope) is less complex to establish and is the preferred parse for the parser, and the nonlocal scope dependency (i.e. high scope) is more complex and less preferred. The interpretation bias revealed by experiment 1, however, is the opposite of the parsing bias.

This conclusion critically depends on the assumption that there is a locality bias in parsing, which is based on previous findings in Xiang & Wang 2020. One potential concern is that although the constructions tested by Xiang and Wang were the same as in the current study, the stimuli in the two studies are not exactly identical. We therefore

2 We chose to use the wording ‘(does not) match’ instead of ‘true’/‘false’ because the literal translation of the latter in Mandarin sounded unnatural as task instructions.
conducted an acceptability judgment experiment (experiment 2) to find out if the parsing locality bias would be replicated using the current set of stimuli.

2.3. Experiment 2: reproducing the locality parsing bias in an acceptability rating task.

Material, participants, procedure, and predictions. The materials for experiment 2 were identical to those for experiment 1, with a total of sixteen sets of four-condition experimental items (see the example in 7 above) and ten filler items. The experimental procedure was also identical to that of experiment 1: each trial consisted of a context scenario followed by a target sentence. The only difference was that, instead of a truth-value judgment task, at the target sentence participants were instructed to make a binary judgment (‘yes’/‘no’) as to whether the target sentence was acceptable. Thirty native Mandarin speakers participated in the study. We excluded six participants from analysis whose accuracy on filler trials was less than 60%. The data analysis reported below was based on the remaining twenty-four participants.

If there is a parsing bias favoring the local scope dependency, we make the following prediction. For the ambiguous conditions 7a and 7b, the local dependency is available, but for the unambiguous conditions 7c and 7d, the local dependency is blocked. The locality bias for the lower scope should manifest in a higher acceptability for the ambiguous than for the unambiguous conditions, since in the latter case the favored low-scope parse is blocked and participants are forced to construct the disfavored high-scope parse. It is well known that parsing difficulty significantly reduces acceptability ratings (e.g. Chomsky & Miller 1963, Hofmeister et al. 2013).

Results and discussion. The acceptability judgment results support our prediction of a local scope preference. As shown in Figure 2, the unambiguous conditions were rated significantly less acceptable (mean = 0.44) than the ambiguous conditions (mean = 0.67), regardless of whether the predicate was positive or negative (est = −1.01 ± 0.37, z = −2.78, p < 0.01). Sentences with positive matrix predicates were also rated lower than those with negative matrix predicates (est = −0.82 ± 0.34, z = −2.44, p < 0.05). Our

3 The converged mixed-effects logistic model is: model = glmer(acceptability~ambiguity×verb polarity + (1 + ambiguity|subj) + (1|item), data, family = binomial).
focus here is not on the cause of the difference between the negative and positive predicates, so we do not discuss this at any length. However, we note that since the context scenario in general ends on a sentence describing what did not happen—for example, that Emily kept the name of the city a secret in 7—this may have primed participants to favor a negative predicate over a positive one in the target sentence.

Figure 2. Acceptability judgment results: proportion of participants’ ‘yes’ responses.

The acceptability ratings for the ambiguous conditions (7a/b) reflect a moderate degree of complexity for these sentences, whereas the much lower ratings for the unambiguous conditions (7c/d) suggest severe parsing complexity. Both patterns are in line with the previous acceptability rating results on similar constructions.4 The gradient acceptability in itself is not unusual for structurally complex sentences, given the well-established observations that even for completely grammatical sentences, heightened processing complexity can substantially reduce acceptability ratings (Chomsky & Miller 1963, Hofmeister et al. 2013). Most important for the current purpose, the low ratings on the unambiguous conditions suggest that associating a wh-in-situ phrase with a nonlocal scope position is difficult and costly for comprehenders.

2.4. Summary of experiments 1 and 2. The results from experiments 1 and 2 present an empirical paradox. On the one hand, experiment 2, using an acceptability rating task, confirmed the locality bias in parsing a wh-in-situ dependency. In particular, sentences that make a local scope dependency available are judged much more acceptable than sentences that block the local scope dependency and allow only a nonlocal high-scope dependency. However, experiment 1, using a truth-value judgment task, showed

4 The experiments in Xiang & Wang 2020 did not manipulate the polarity of the matrix verb; in fact, the majority of the items there had a positive matrix predicate. The basic sentence structures tested there were identical to the target sentences in 7, but they did not have a preceding context scenario. The mean acceptability judgments (yes/no binary judgments) reported in experiment 1 of Xiang & Wang 2020 were 0.75 for the ambiguous condition and 0.39 for the unambiguous condition; these ratings were replicated in their experiment 2, with 0.7 for the ambiguous condition and 0.3 for the unambiguous condition. Completely ungrammatical filler sentences were also included in that study, which received an average acceptability rating of 0.18. The mean ratings for the ambiguous and unambiguous conditions from Xiang & Wang 2020 are on a par with the mean ratings in the current study, and the slightly lower ratings on the ambiguous positive predicate sentences in the current study are more likely due to the context scenario than to the sentence complexity itself.
an antilocality bias in the ultimate interpretation participants obtained for sentences that
are scope-ambiguous. The apparent contrast between the results from these two experi-
ments sets up the core empirical observation that parsing biases do not necessarily align
with interpretive biases. The parsing-interpretation misalignment revealed in experi-
ments 1 and 2 is broadly in line with previous findings based on ‘good-enough’ misin-
terpretations, such as those found in garden-path or local-coherence sentences. In these
other cases, it is possible for the comprehenders to obtain interpretations that are not li-
censed by the grammatical parse. In the current case, there is no ‘misinterpretation’ per
se, since the interpretations under consideration are all licensed by the grammar, but
there is still a parsing-interpretation misalignment in the sense that at the global level
the preferred interpretation is not the one compatible with the preferred parse.

The claim about the misalignment between parsing and interpretation, that is, a local-
ity bias for parsing and an antilocality bias for interpretation, is relevant only for the am-
biguous conditions tested in experiments 1 and 2. The unambiguous conditions mainly
serve as controls to help us detect the locality bias in parsing. The rest of the article there-
fore focuses only on the ambiguous conditions, and we develop a formal proposal to rec-
 reconcile the discrepancies observed in experiments 1 and 2. The main intuition we develop
is that sentence comprehension/interpretation should be modeled as the result of a prag-
matic reasoning process between cooperative conversational partners.

This is not to deny the role of parsing in sentence comprehension. In fact, compre-
hension requires constructing structural representations for the linguistic input, because
semantic composition needs to consult the parsing outcome. In the current case study, a
complete parse will specify where the scope position is for the wh-in-situ phrase. But in
the meantime, parsing-based semantic composition is only the beginning, and not the
end, of the interpretive process. In the rest of the article, we explore the possibility that
the currently observed contrast between parsing and interpretative decisions can be (at
least partly) captured by examining how a listener pragmatically reasons about the most
likely messages the speaker has intended, given the possible parses of the utterance and
the listener’s world knowledge.

The general idea that language communication should be viewed as a cooperative
process between speakers and listeners, involving sophisticated pragmatic reasoning, is
an old and extremely influential one (Grice 1975). In recent years, this insight has been
formalized using Bayesian pragmatic models, in particular the rational speech act
framework (RSA; Frank & Goodman 2012, Goodman & Frank 2016). Our proposal is
built upon the RSA framework. In §3, we first introduce some general background
about the RSA model, and then extend the original model to the current case study.
Most importantly, we show that parsing preferences can be integrated with Bayesian
pragmatic reasoning in a single model, and this makes the correct predictions, as shown
by further empirical evaluations in §4. Overall, our extended model successfully recon-
cedes the apparent discrepancies between parsing and interpretation.

3. Integrating Parsing Biases with Bayesian Pragmatic Inferences.

3.1. The Rational Speech Act Model of Pragmatic Inferences. The RSA model
(Frank & Goodman 2012, Goodman & Frank 2016) views speakers and listeners as ra-
tional agents who collaborate on a language communication task. In a linguistic ex-
change, a listener and a speaker probabilistically and recursively reason about each
other’s behavior. A listener assumes that the utterance made by the speaker is meant to
convey a particular state of the world (i.e. a message), with the understanding that the
speaker chooses a particular utterance instead of any other alternatives because they
reason about how an utterance would be interpreted by a listener. The recursive reasoning could continue on for many levels of iteration, but minimally we could consider three levels for the current purpose: a pragmatic listener, a pragmatic speaker, and a literal listener. At the top is the level of inference of a pragmatic listener. Upon hearing an utterance, a pragmatic listener would update their probabilistic model of world states based on the information conveyed by the utterance. A pragmatic listener’s posterior belief about a particular world state \(w \) given the utterance \(u \), using the Bayes rule, is shown in equation 8.

\[
P_{L}(w|u) = \frac{P_{S}(u|w) \times P(w)}{\sum_{w'} P_{S}(u|w') \times P(w')}
\]

The pragmatic listener (L) conditions their belief update on two factors. First, assuming the speaker (S) is cooperative and trying to be helpful, the listener works backward and estimates the likelihood that the speaker would have uttered \(u \) given the world state \(w \) in the speaker’s mind (the term \(P_{S}(u|w) \)). Second, the listener also brings to the communication their prior belief as to how likely it is that the world state \(w \) holds independent of the utterance (the term \(P(w) \)). The normalizing constant in 8 (i.e. the denominator) considers the alternative world states that could have been relevant in the communicative context.

The inferences of a pragmatic speaker, that is, the term \(P_{S}(u|w) \) in equation 8, is defined in the following way. Speakers could have more than one choice of utterance when they linguistically encode a particular world state, but their decision is assumed to be rational: they choose their utterance from a set of alternative utterances according to the utility \(U_{S} \) that a particular utterance would obtain, as shown in 9. A rational pragmatic speaker would in general want to maximize their utility, and the free parameter \(\alpha \) in 9 captures the extent to which the speaker is a rational agent, that is, how much they would choose their utterance to maximize its utility. When \(\alpha = 0 \), the speaker’s choices are random, but as \(\alpha \to \infty \), the speaker chooses the utterance with the greatest utility. The utility function could be defined in a number of ways (Goodman & Frank 2016), and we follow the most basic definition, which states that a pragmatic speaker would choose to make the most informative utterance to the listener, as shown in 10. To avoid infinite recursion, the listener in 10 is defined to be a simple literal listener \(L_{0} \). Based on the equation in 10, utterances with high utility are those that would make the literal listener boost the probability of the world state \(w \) intended by the speaker. The literal listener updates their probabilistic beliefs about different world states (i.e. the term \(P_{L_{0}}(w|u) \)) based on whether the literal meaning (i.e. the semantic meaning) of the utterance is compatible with the relevant world states, as shown in 11.

\[
P_{S}(u|w) \propto \exp(\alpha \times U_{S}(u; w))
\]

\[
U_{S}(u; w) = \ln(P_{L_{0}}(w|u))
\]

\[
P_{L_{0}}(w|u) = \frac{\delta_{u|w} P(w)}{\sum_{w' \in W} \delta_{u|w'} P(w')}
\]

The literal listener’s inference in 11 is crucial for the standard RSA model—this is the level at which the compositional semantics of the linguistic input is imported into the pragmatic reasoning process. The term \(\delta_{u|w} \) in 11 takes the value 1 or 0, deter-

5 We make the assumption that the prior is shared for both the pragmatic listener inference in 8 and the literal listener inference in 11. There is thus no subscript on the term \(P(w) \).

6 Strictly speaking, the utility function should also consider the cost of an utterance. For the sake of simplicity, we consider only the informativeness of an utterance here.
mined by whether the utterance \([u]\) is compatible with a given world state \(w\). All world states that would make the utterance false are removed, and the literal listener updates their beliefs based on the remaining world states (i.e. the ones that are compatible with the semantics of the utterance). Since this is where compositional semantics meets pragmatic reasoning, we propose that parsing biases could be incorporated into the pragmatic reasoning process at the literal listener’s level. In particular, the basic form of the literal listener in 11 deals with simple, unambiguous utterances. With a more complex, ambiguous utterance \(u\), if it has \(n\) possible structural parses that partition the entire parsing space (i.e. the probabilities of these parses add up to 1), it can be proved that the literal listener’s inference about \(u\) is the sum of \(L_0\)’s inference of each possible parse weighted by the probability of that parse. We demonstrate this extended version of \(L_0\)’s inference in 12. Pertaining to the empirical case of our interest, we assume that the utterance \(u\) in 12 has two possible parses, \(u_h\) and \(u_l\), representing a wh-high-scope and a wh-low-scope parse, respectively.\(^7\) The probability of a world state is first computed for each structural parse separately by applying 11 to that parse, and then the information is summed together after being weighted by the probability of each parse.

\[
(12) \quad P_{L_0}(w|u) = P_{L_0}(w|u_h) \times P(u_h) + P_{L_0}(w|u_l) \times P(u_l)
\]

\[
= \sum_w P(w|u_h) \times P(u_h) + \sum_w P(w|u_l) \times P(u_l)
\]

In the rest of this section, we apply equations 8–12 to understand the empirical puzzle raised in experiments 1 and 2. A wh-in-situ utterance with scope ambiguity could in principle be used to convey a number of different states of the world. The ultimate task for us is to derive, based on 8, a pragmatic listener’s posterior probability for each relevant world state upon hearing an ambiguous utterance like the one in 7a/b. We do this in §3.6 in a qualitative manner, and then later in §4.2 with more quantitative measures. Also in §4.2, we link the posterior probabilities of a pragmatic listener to the empirical truth-value judgment results obtained in experiment 1. But prior to applying 8, we first need to implement a number of other necessary steps and work through equations 9–12. First, in §3.2, we define the relevant world states for an ambiguous wh-in-situ utterance. Next, we experimentally estimate the prior term \(P(w)\) for each world state in §3.3. Then in §3.4 we derive the literal listener’s inference based on equations 11 and 12. This is a crucial step, since the parsing bias of the wh-in-situ utterances is integrated with the RSA model at this step. After that in §3.5 we derive the speaker inference based on equations 9 and 10. Finally in §3.6 we put everything together and derive the pragmatic listener’s inference based on equation 8.

3.2. Defining the relevant world states. If a listener’s interpretation process is modeled as updating their beliefs of the relevant world states \(w\) given an utterance \(u\), it is important to be clear about what the relevant world states could be for the current case study. Our main interest is the ambiguous wh-in-situ utterances \(u\) in 7a and 7b. These examples are repeated here in 13a and 13b.

\(^7\) The derivation in 12 holds because \(P(u) = P(u_h) + P(u_l) = 1\), assuming that the current target utterance \(u\) has only two parses, \(u_h\) and \(u_l\). The full derivation is the following: \(P_{L_0}(w|u) = \frac{P(w \cap u)}{P(u)} = P_{L_0}(w \cap u_h) + P_{L_0}(w \cap u_l)\), since \(u = u_h \cup u_l\), \(u_h \cap u_l = \emptyset\), and \(P(u) = 1\). Furthermore, \(P_{L_0}(w \cap u_h) = P_{L_0}(w|u_h) \times P(u_h)\), and \(P_{L_0}(w \cap u_l) = P_{L_0}(w|u_l) \times P(u_l)\).
(13) a. Ambiguous; Matrix verb positive

Emily announced her team discovered that aliens established which city.

High scope: ‘Emily announced which city her team discovered that aliens established.’

Low scope: ‘Emily announced that her team discovered which city the aliens established.’

b. Ambiguous; Matrix verb negative

Emily concealed her team discovered which city the aliens established.

High scope: ‘Emily concealed which city her team discovered that aliens established.’

Low scope: ‘Emily concealed that her team discovered which city the aliens established.

These utterances are ambiguous, and could convey information about different world states. The high- or low-scope readings of the sentences above are semantic meanings derived from particular structural representations (i.e. depending on the scope dependency), and in principle, each of them could be compatible with one or more states in the world. Let us first make clear what the most relevant world states could be for our working example in 13. When the matrix predicate is positive, as in 13a, the relevant world states are a set of possible combinations of two events: e1: Emily announced the name of a city, which her team discovered was built by aliens; and e2: Emily announced her team’s discovery that there was a city built by aliens. Let us call e1 the name announcement event, and e2 the discovery announcement event. These two events can be combined in four different ways, assuming that each event takes either a true (+) or false (−) value, as shown in Table 1. Of the four combinations, w2 is not logically possible, since Emily could not have announced the name of the city that they discovered was built by aliens without also announcing that they made such a discovery. In addition, w4 is irrelevant, since if neither event is true, the speaker would not have uttered 13a in the first place. The two remaining world states, w1 and w3, are therefore the two relevant states the pragmatic listener considers for the target sentence. Applying the same reasoning to the target sentence with a negative matrix predicate, as in 13b, the relevant world states are also a set of possible combinations of two events: the name-concealing event e1: Emily concealed the name of a city, which her team discovered was built by aliens; and the discovery-concealing event e2: Emily concealed her team’s discovery that there was a city built by aliens. Among the four combinations of these two events, shown in Table 2, w3 is logically impossible, because one cannot conceal the discovery of the city without also concealing the name of the city that was discovered. Possibility w4 in Table 2 is again irrelevant. The pragmatic listener would therefore consider two relevant world states, w1 and w2 in Table 2, upon hearing the target sentence.

In Table 3, we summarize the relevant world states that remain to be considered by the listener given the target sentences. These are relabeled in Table 3 as w1 and w2, and these are the w1 and w2 we refer to in the later discussion. Note that the corresponding w2 states for the positive and negative utterances essentially represent identical world affairs, but the corresponding w1 states are different.
With the relevant world states defined as above, in the next section we experimentally estimate the prior probability for each state, that is, \(P(w_1) \) and \(P(w_2) \).

\[3.3.\text{Experiment 3: estimating the prior probabilities.}\]

Material, participants, and procedure. To experimentally assess the prior probabilities of each different world state relevant to the listener, we first provided participants a neutral context that corresponds to the background scene used in the truth-value judgment task in experiment 1: for example, a background scene about an archaeology conference. Once participants viewed the context sentence, on the next screen they were instructed to choose between two possible situations that could take place in the given context. These two situations corresponded to the two different world states illustrated in Table 3 (with different paraphrases). World states for sentences with positive

\[\begin{array}{|c|c|c|c|}
\hline
\text{WORLD STATES} & \text{E1 NAME} & \text{E2 DISCOVERY} & \text{CONSIDERED A RELEVANT} \\
\hline
w_1 & + & + & yes \\
w_2 & + & - & no \\
w_3 & - & + & yes \\
w_4 & - & - & no \\
\hline
\end{array}\]

Table 1. World states relevant for utterances with a positive predicate.

\[\begin{array}{|c|c|c|c|}
\hline
\text{WORLD STATES} & \text{E1 NAME} & \text{E2 DISCOVERY} & \text{CONSIDERED A RELEVANT} \\
\hline
w_1 & + & + & yes \\
w_2 & + & - & yes \\
w_3 & - & + & no \\
w_4 & - & - & no \\
\hline
\end{array}\]

Table 2. World states relevant for utterances with a negative predicate.

\[\begin{array}{|c|c|c|c|}
\hline
\text{WORLD STATES} & \text{POSITIVE MATRIX PREDICATE} & \text{NEGATIVE MATRIX PREDICATE} & \\
\hline
w_1 & \text{Emily announced that they discovered that a city was built by aliens, and she also announced the name of the city. (艾米丽宣布了她们发现了有一个城市是外星人建造的, 她也同时宣布了这个城市的名字。)} & \text{Emily concealed the fact that they discovered that a city was built by aliens, and she also concealed the name of the city. (艾米丽隐瞒她们发现了有一个城市是外星人建造的, 她也同时隐瞒了这个城市的名字。)} & \\
\hline
w_2 & \text{Emily announced that they discovered that a city was built by aliens, but she did not announce the name of the city. (艾米丽宣布了她们发现了有一个城市是外星人建造的, 但还没宣布这个城市的名字。)} & \text{Emily did not conceal the fact that they discovered that a city was built by aliens, but she concealed the name of the city. (艾米丽没有隐瞒她们发现了有一个城市是外星人建造的, 但隐瞒了这个城市的名字。)} & \\
\hline
\end{array}\]

Table 3. A summary of the relevant world states considered in the model.

With the relevant world states defined as above, in the next section we experimentally estimate the prior probability for each state, that is, \(P(w_1) \) and \(P(w_2) \).

The goal of the prior elicitation task is to establish priors for the world states relevant to the interpretation of the target utterance. One potential concern could be that the context in 14 should be biased instead of neutral, in keeping with the context used for the truth-value judgment task in experiment 1. But in our truth-value judgment task, the target sentence was meant to be an independent sentence, rather than a continuation of the context sentence. As shown in the procedure of experiment 1, the context scenario and the target sentence were presented on two separate screens, and participants were explicitly asked to decide whether the meaning of the target sentence matched or did not match the context scenario they saw. For participants to give a truth-value judgment, they needed to compare their interpretation of the target sentence to the (biased) context, but this does not mean they conditioned the interpretation of the target utterance on the context. In fact, if they had conditioned the interpretation of the target sentence on the context, they should have always interpreted the target sentence in a way consistent with the context, and should not have ever given a ‘does not match’ response. We therefore did not use the biased context from experiment 1 for the prior elicitation task.
and negative matrix predicates were tested in two different conditions in a within-subjects design. The experiment material was closely modeled after material from experiment 1. Sixteen sets of items corresponding to the original sixteen sets of scenarios in experiment 1 were constructed, with two conditions in each set of items. Each condition contained two choices \(w_1 \) and \(w_2 \). An example item set is given in 14. As mentioned above, the \(w_2 \) states under the positive and negative matrix predicates represent identical world affairs. We therefore used identical paraphrases for the \(w_2 \) situation under 14a and 14b. In Figure 3 we also present an example trial.

(14) Context: At a recent archaeology conference, Emily made a presentation on behalf of her research team. (Mandarin: 在最近的一次考古界的学术会议上，艾米丽代表她的研究团队作了一个报告。)

Question: Which of the following situations is more likely to arise? (Mandarin: 以下的哪种情况更有可能发生?)

a. Positive predicate condition

\(w_1 \): In her report, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. She also released the name of the city. (Mandarin: 在她的报告里，艾米丽说她的团队找到了证据证实某一个有名的古城市其实是外星人建造的，她同时也宣布了这个城市的名字。)

\(w_2 \): In her report, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. But the name of the city needs to be kept secret for the moment. (Mandarin: 在她的报告里，艾米丽说她的团队找到了证据证实某一个有名的古城市其实是外星人建造的，但目前她需要对这个城市的名字保密。)

b. Negative predicate condition

\(w_1 \): Emily’s research team actually has found evidence to prove that a famous ancient city was built by aliens. But in her report she didn’t mention this discovery at all. (Mandarin: 艾米丽的团队其实已经找到了证据证实某一个有名的古城市是外星人建造的，但在报告里完全隐瞒了这个发现。)

\(w_2 \): In her report, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. But the name of the city needs to be kept secret for the moment. (Mandarin: 在她的报告里，艾米丽说她的团队找到了证据证实某一个有名的古城市其实是外星人建造的，目前她需要对这个城市的名字保密。)

The experiment was conducted on IbexFarm. One hundred and nineteen native Mandarin speakers participated in our study. The sixteen sets of experimental items were distributed to participants in a Latin square distribution, such that each participant saw only one of the two conditions for each item. There were additionally ten filler items, so each participant finished a total of twenty-six trials.

Results. Among the choices participants made for the positive predicate condition, there was on average a slight numerical preference for the \(w_1 \) state (0.53 \(w_1 \) vs. 0.47 \(w_2 \)), but it was not significantly different from chance (\(p = 0.07 \)); for the negative predicate condition, there was a preference for \(w_2 \) over \(w_1 \) (0.42 \(w_1 \) vs. 0.58 \(w_2 \)), significantly different from chance (\(p < 0.0001 \)).
3.4. Connecting parsing outcomes to pragmatic reasoning. With the world states defined and the prior probability of each state estimated, in this section we demonstrate how to integrate parsing biases and pragmatic reasoning into a single model. In particular, we work through equations 11 and 12 in this section. As mentioned in §3.1, a full Bayesian pragmatic model carries out recursive reasoning between a listener and a speaker. A pragmatic speaker makes decisions about their production choices by reasoning about the linguistic update of a literal listener, and the outcome from the pragmatic speaker stage is in turn used to update a pragmatic listener’s inferences. As the starting point of this chain of reasoning, the literal listener \(L_0 \) is the crucial step that connects structured semantic composition to pragmatic reasoning. The literal listener \(L_0 \) does this by performing a belief update about different world states based on the literal meaning of a heard utterance.

The basic formulation of \(L_0 \) in equation 11, adapted from the original RSA framework, applies only to utterances that are structurally simple and unambiguous. Extending it to deal with syntactically complex and ambiguous sentences, we make the simple assumption that the compositional semantics of an utterance \(u \) depends on how the surface string is parsed. In the current case, a target wh-in-situ sentence has two possible parses, each representing one type of scope dependency. Let us call the two parses \(u_h \) and \(u_l \), standing for the high-scope parse and the low-scope parse, respectively. As shown in 12, repeated as 15, we can calculate the \(L_0 \)’s inferences for an ambiguous utterance by combining different parses based on the probability of each parse.

\[
P_{L_0}(w|u) = P_{L_0}(w|u_h) \times P(u_h) + P_{L_0}(w|u_l) \times P(u_l) \\
= \delta_{[u_h|w]} P(w) \times P(u_h) + \delta_{[u_l|w]} P(w) \times P(u_l)
\]

To see how 15 applies to the current empirical case, let us consider our working example in 13a, in which the matrix predicate is positive. The English glosses for 13a are repeated in 16. For convenience, we also repeat from Table 3 the two world states relevant for this utterance.

At a recent archaeology conference, Emily made a presentation on behalf of her research team. (在最近的一次考古学学术会议上, 艾米丽代表她的研究团队作了一个报告。）

(On a separate screen)

Which of the following situation is more likely to arise? (以下的情况更有可能发生？

1. In her report, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. She also released the name of the city. (在她的报告里, 艾米丽说她团队找到了证据证实一个有名的古城市其实是外星人建造的, 她同时也公布了这个城市的名字。)

2. In her report, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. But the name of the city needs to be kept secret for the moment. (在她的报告里, 艾米丽说她的团队找到了证据证实一个有名的古城市其实是外星人建造的, 但目前她需要对这个城市的名字保密。)

Figure 3. An example trial for experiment 3. This example represents a trial that estimates the prior probability of each relevant world state under a positive predicate sentence.
(16) Emily **announced** her team **discovered** aliens established which city. (艾米丽公布了她的团队发现了外星人建造了哪座城市。)

High-scope parse: ‘Emily announced which city her team discovered that aliens established.’

Low-scope parse: ‘Emily announced that her team discovered which city the aliens established.’

\(w_1\) positive: Emily announced that they discovered that a city was built by aliens, and she also announced the name of the city.

\(w_2\) positive: Emily announced that they discovered that a city was built by aliens, but she did not announce the name of the city.

Based on 15, we can compute the posterior probabilities a literal listener has for world states \(w_1\) and \(w_2\) upon hearing the ambiguous utterance in 16. To start with, we first make the simple assumption that it is equally likely for a literal listener to parse the ambiguous string in 16 into a high-scope or a low-scope dependency: that is, \(P(u_h)\) and \(P(u_l)\) are equal at 0.5. We know that this is in fact not true, since there is a locality bias in parsing that favors the low-scope parse (see experiment 2 and the discussion there), and we come back to modify this assumption at the end of this section. If the utterance \(u\) in 16 is parsed as \(u_h\), it specifies the fact that the name of the city was made known. Under this parse the utterance is compatible with \(w_1\) (hence \(\delta_{[u_h][w_1]} = 1\) in 17) but incompatible with \(w_2\) (hence \(\delta_{[u_h][w_2]} = 0\)). If the utterance \(u\) is parsed as \(u_l\), since it under-specifies whether the name of the city is made known, it is compatible with both \(w_1\) and \(w_2\). We therefore cannot remove either \(w_1\) or \(w_2\) from consideration, and both are kept as viable options for the listener to consider. In addition, we already know that the prior probabilities for \(P(w_1)\) and \(P(w_2)\) are 0.53 and 0.47 (see experiment 3). The literal listener \(L_0\) therefore updates their beliefs about \(w_1\) and \(w_2\) in the following way.

(17) a. \(P_{L_0}(w_1|u_{positive})\)

\[
\begin{align*}
\frac{\delta_{[u_h][w_1]} P(w_1)}{\delta_{[u_h][w_1]} P(w_1) + \delta_{[u_l][w_2]} P(w_2)} \times P(u_h) + \\
\frac{\delta_{[u_l][w_1]} P(w_1) + \delta_{[u_l][w_2]} P(w_2)}{1 \times 0.53 + 0 \times 0.47} \times 0.5 + \\
\frac{1 \times 0.53 + 1 \times 0.47 \times 0.5}{1 \times 0.53 + 1 \times 0.47} \times 0.5 \\
= 1 \times 0.5 + 0.53 \times 0.5 \\
= 0.765
\end{align*}
\]

b. \(P_{L_0}(w_2|u_{positive})\)

\[
\begin{align*}
\frac{\delta_{[u_l][w_2]} P(w_2)}{\delta_{[u_h][w_1]} P(w_1) + \delta_{[u_l][w_2]} P(w_2)} \times P(u_h) + \\
\frac{\delta_{[u_l][w_1]} P(w_1) + \delta_{[u_l][w_2]} P(w_2)}{0 \times 0.47 + 1 \times 0.47} \times 0.5 + \\
\frac{1 \times 0.53 + 1 \times 0.47 \times 0.5}{1 \times 0.53 + 1 \times 0.47} \times 0.5 \\
= 0 \times 0.47 \times 0.5 \\
= 0.235
\end{align*}
\]

The results from the calculation in 17 suggest that even though the literal listener starts with a prior belief that the probabilities for \(w_1\) and \(w_2\) are very close to each other (0.53 and 0.47), after hearing the utterance in 16, the literal listener is leaning much more toward believing \(w_1\) over \(w_2\).

The working example from 13b, in which the utterance contains a negative matrix predicate, is repeated in 18. The calculation in 19 is very similar to the positive predi-
cate case in 17, but the compatibility between the utterance and each world state changes. When the utterance \(u \) is parsed as \(u_h \), it is compatible with both \(w_1 \) and \(w_2 \); hence both states need to be considered by the listener. If the utterance is parsed as \(u_l \), it is compatible only with \(w_1 \), and \(w_2 \) will be removed from further consideration. In addition, the prior probabilities for \(w_1 \) and \(w_2 \) were estimated to be 0.42 and 0.58 from experiment 3.

(18) Emily concealed her team discovered aliens established which city.

High-scope parse: ‘Emily concealed which city her team discovered that aliens established.’

Low-scope parse: ‘Emily concealed that her team discovered which city the aliens established.’

\(w_1 \) negative: Emily concealed the fact that they discovered that a city was built by aliens, and she also concealed the name of the city.

\(w_2 \) negative: Emily did not conceal the fact that they discovered that a city was built by aliens, but she concealed the name of the city.

\[
P_{L0}(w_1|u_{\text{negative}}) = \frac{\delta_{[uh](w_1)} P(w_1)}{\delta_{[uh](w_1)} P(w_1) + \delta_{[ul](w_2)} P(w_2)} \times P(u_h) + \frac{\delta_{[ul](w_1)} P(w_1)}{\delta_{[ul](w_1)} P(w_1) + \delta_{[ul](w_2)} P(w_2)} \times P(u_l)
\]

\[
= \frac{1 \times 0.42}{1 \times 0.42 + 1 \times 0.58} \times 0.5 + \frac{1 \times 0.42}{1 \times 0.42 + 0 \times 0.58} \times 0.5
\]

\[
= 0.42 \times 0.5 + 1 \times 0.5
\]

\[
= 0.71
\]

\[
P_{L0}(w_2|u_{\text{negative}}) = \frac{\delta_{[ul](w_2)} P(w_2)}{\delta_{[ul](w_1)} P(w_1) + \delta_{[ul](w_2)} P(w_2)} \times P(u_h) + \frac{\delta_{[ul](w_2)} P(w_2)}{\delta_{[ul](w_1)} P(w_1) + \delta_{[ul](w_2)} P(w_2)} \times P(u_l)
\]

\[
= \frac{1 \times 0.58}{1 \times 0.42 + 1 \times 0.58} \times 0.5 + \frac{0 \times 0.58}{1 \times 0.42 + 0 \times 0.58} \times 0.5
\]

\[
= 0.58 \times 0.5 + 0
\]

\[
= 0.29
\]

The observation here is that even though the literal listener started with a lower prior probability for \(w_1 \) (0.42), after hearing the utterance, the listener’s posterior beliefs have changed to favor \(w_1 \) over \(w_2 \) (0.71 vs. 0.29).

The calculations in 17 and 19 show that a literal listener, upon hearing a scope-ambiguous \(\text{wh} \)-sentence, would favor \(w_1 \) over \(w_2 \) regardless of whether the predicate is positive or negative. The calculations so far are based on the assumption that the literal listener has no parsing bias while parsing an ambiguous string \(u \) into either a high-scope or a low-scope dependency (\(p(u_h) = p(u_l) = 0.5 \)). This assumption needs refinement, since we already know that the parser favors the low-scope dependency over the high-scope one. After we introduce the constraint \(0 < p(u_h) < 0.5 \) and \(0.5 < p(u_l) < 1 \) into the calculations in 17 and 19, we derive that for utterances with a positive predicate like 17, the literal listener’s posterior probability for \(w_1 \) is between 0.53 and 0.765; and for utterances with a negative predicate like 19, it is between 0.71 and 1. In other words, upon hearing a scope-ambiguous target utterance, given the parsing preference that favors the low-scope dependency, the literal listener is predicted to assign higher posterior probability to \(w_1 \) than to \(w_2 \), regardless of the polarity of the predicate.
3.5. From the literal listener to the pragmatic speaker. With the inferences of a literal listener, we can now model the next level of inferences: the pragmatic speaker’s inferences in equations 9 and 10. These two equations are combined and presented/repeated in 20. According to 20 the speaker’s choice of an utterance is largely determined by the informativity of this utterance. The probability of a speaker choosing an utterance to convey a world state is proportional to the posterior probability that the literal listener L_0 infers about the target world state upon hearing that utterance.

$$P_S(u|w) \propto \exp(\alpha \times \ln(P_{L_0}(w|u)))$$

The pragmatic speaker makes their production choices by comparing the informativity/utility of all the alternative utterances for a given world state. The contribution of the alternative utterances can be seen more clearly in 21, which includes the proportionality constant that is not specified in 20.

$$P_S(u|w) = \frac{\exp(\alpha \times U_S(u; w))}{\sum_{u' \in ALT} \exp(\alpha \times U_S(u'; w))} = \frac{\exp(\alpha \times \ln(P_{L_0}(w|u)))}{\sum_{u' \in ALT} \exp(\alpha \times \ln(P_{L_0}(w|u')))}$$

Based on 21, given a well-defined set of alternative utterances u_1, u_2, \ldots, u_n and a set of relevant world states w_1, w_2, \ldots, w_k, one can calculate the production likelihood $P(u_i|w_j)$ for each pair of u and w. One critical question is how to define the set of alternative utterances available to a speaker. Previous studies using the basic RSA framework often investigated syntactically simple structures, in which case it is relatively straightforward to define the set of alternative utterances for a speaker. For example, in the case of the quantity implicature calculation that derives the ‘some but not all’ inference from the quantifier some, it is reasonable to hypothesize that some and all form the set of alternative expressions a speaker could choose from. In applying 21 to the current empirical case, however, there are a number of practical challenges. In particular, the target structure of interest in the current study, the multiclausal wh-in-situ construction, is much more complex. It is difficult to define in advance, on a principled ground, the possible alternative structures a speaker may use. We therefore conducted a production experiment to get a better assessment.

The details of this experiment (experiment 4) are introduced in the next section. Overall, the empirical production results revealed a nuanced set of structures from participants, which also varied depending on the context scenarios and the lexical items involved. Informed by the empirical production results, we make the following simplifying assumptions. Since a large number of the alternative structures produced by participants in our production experiment were unambiguous, we take the unambiguous utterances to be the major type of alternative choice a speaker has. We therefore assume three types of utterances available to the pragmatic speaker: the ambiguous target wh-in-situ construction u_{ambig}, which is compatible with different world states; the utterance $u_{unambig}1$, which unambiguously describes world state w_1 and is therefore incompatible with other world states; and the utterance $u_{unambig}2$, which unambiguously describes world state w_2 and is therefore incompatible with other world states.
with \(w_2 \); and finally the utterance \(u_{\text{unambig}} \), which unambiguously describes world state \(w_2 \) and is incompatible with \(w_1 \). A literal listener’s update based on these three types of utterances is presented in Table 4.

<table>
<thead>
<tr>
<th>ALTERNATIVE UTTERANCES</th>
<th>(w_1)</th>
<th>(w_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{\text{ambig}})</td>
<td>(P_{\text{exp}}(w_1</td>
<td>u_{\text{ambig}}))</td>
</tr>
<tr>
<td>(u_{\text{unambig1}})</td>
<td>(P_{\text{exp}}(w_1</td>
<td>u_{\text{unambig1}}) = 1)</td>
</tr>
<tr>
<td>(u_{\text{unambig2}})</td>
<td>(P_{\text{exp}}(w_1</td>
<td>u_{\text{unambig2}}) = 0)</td>
</tr>
</tbody>
</table>

Table 4. A literal listener’s posterior probabilities for each utterance and world-state pair.

Given the three types of alternative utterances in Table 4, which are an approximation but not a precise representation of all of the possible utterances, we derive the probability of a pragmatic speaker choosing the target \(\text{wh}-\text{in}-\text{situ} \) form \(u_{\text{ambig}} \) to describe \(w_1 \) and \(w_2 \) in the following way (based on 21).

\[
\begin{align*}
P_s(u_{\text{ambig}}|w_1) &= \frac{\exp(\alpha \times \ln(P_{\text{exp}}(w_1|u_{\text{ambig}})))}{\sum_{u'\in\text{ALT}} \exp(\alpha \times \ln(P_{\text{exp}}(w_1|u'))) \\
&= \frac{\exp(\alpha \times \ln(P_{\text{exp}}(w_1|u_{\text{ambig}})))}{\exp(\alpha \times \ln(P_{\text{exp}}(w_1|u_{\text{unambig1}}))) + \exp(\alpha \times \ln(P_{\text{exp}}(w_1|u_{\text{unambig2}})))} \\
&= \frac{(P_{\text{exp}}(w_1|u_{\text{ambig}}))^{\alpha}}{(P_{\text{exp}}(w_1|u_{\text{ambig}}))^{\alpha} + 1 + 0} \\
&= \frac{(P_{\text{exp}}(w_1|u_{\text{ambig}}))^{\alpha}}{(P_{\text{exp}}(w_1|u_{\text{ambig}}))^{\alpha} + 1} \\
\end{align*}
\]

\[
\begin{align*}
P_s(u_{\text{ambig}}|w_2) &= \frac{\exp(\alpha \times \ln(P_{\text{exp}}(w_2|u_{\text{ambig}})))}{\sum_{u'\in\text{ALT}} \exp(\alpha \times \ln(P_{\text{exp}}(w_2|u'))) \\
&= \frac{\exp(\alpha \times \ln(P_{\text{exp}}(w_2|u_{\text{ambig}})))}{\exp(\alpha \times \ln(P_{\text{exp}}(w_2|u_{\text{unambig1}}))) + \exp(\alpha \times \ln(P_{\text{exp}}(w_2|u_{\text{unambig2}})))} \\
&= \frac{(P_{\text{exp}}(w_2|u_{\text{ambig}}))^{\alpha}}{(P_{\text{exp}}(w_2|u_{\text{ambig}}))^{\alpha} + 0 + 1} \\
&= \frac{(P_{\text{exp}}(w_2|u_{\text{ambig}}))^{\alpha}}{(P_{\text{exp}}(w_2|u_{\text{ambig}}))^{\alpha} + 1} \\
\end{align*}
\]

Because we already know from the last section that \(P_{\text{exp}}(w_1|u_{\text{ambig}}) > P_{\text{exp}}(w_2|u_{\text{ambig}}) \) regardless of whether the target utterance contains a positive or a negative predicate, it can be derived that \(P_s(u_{\text{ambig}}|w_1) > P_s(u_{\text{ambig}}|w_2) \). That is to say, the pragmatic speaker is more likely to use a scope-ambiguous \(\text{wh}-\text{in}-\text{situ} \) target utterance when describing \(w_2 \) than when describing \(w_1 \) (regardless of whether the target utterance contains a positive or a negative predicate). We come back to this prediction in §4.1, in which we present a production experiment to test this prediction.

3.6. Putting everything together—deriving the pragmatic listener’s inferences

We are now ready to tackle the inferences made by a pragmatic listener. Using the Bayesian inference rule in 8, the following relations in 24 and 25 hold: a

\(^{10}\) When \(0 < y < x < 1 \) and \(\alpha > 0 \), \(x^\alpha y^\alpha + x^\alpha > x^\alpha y^\alpha + y^\alpha \), and it follows from there that \(\frac{x^\alpha}{\alpha + 1} > \frac{x}{\alpha + 1} \).
pragmatic listener’s posterior probability of a world state conditioned on a target
wh-in-situ utterance is proportional to the product of the probability of a speaker
choosing that utterance to convey the target world state and the prior probability of that
world state.

\[P_L(w_1|u) \propto P_S(u|w_1) \times P(w_1) \]
\[P_L(w_2|u) \propto P_S(u|w_2) \times P(w_2) \]

We have empirically estimated the prior probabilities of the relevant world states \(w_1 \) and
\(w_2 \), and we also derived the speaker probabilities in the last section, which in turn were
based on the literal listener’s inferences that take into account the parsing biases.

Let us first consider the situation in which the utterance \(u \) is an ambiguous wh-in-situ
construction with a positive predicate (see the example in 13a). For the prior probabili-
ties, based on experiment 3, for utterances with a positive predicate, \(P(w_1) > P(w_2) \)
\((0.53 \text{ } w_1 \text{ vs. } 0.47 \text{ } w_2)\). For the speaker probabilities, we know from the last section that
\(P_S(u|w_1) > P_S(u|w_2) \). Combining this information with 24 and 25, we can conclude the
following in 26: upon hearing the utterance in 13a, the pragmatic listener has a higher
posterior probability for world state \(w_1 \) than for world state \(w_2 \).

\[P_L(w_1|u) > P_L(w_2|u) \]

But the situation is less straightforward when the utterance \(u \) contains a negative
predicate (see the example in 13b). On the part of the speaker probabilities, based on the
discussion in the last section we still have \(P_S(u|w_1) > P_S(u|w_2) \); but the prior probabili-
ties estimated from experiment 3 revealed that \(P(w_1) < P(w_2) \) \((0.42 \text{ } w_1 \text{ vs. } 0.58 \text{ } w_2)\).
Given these, the specific relation between \(P_L(w_1|u) \) and \(P_L(w_2|u) \) is uncertain: according
to 24 and 25, whether the pragmatic listener assigns a higher posterior probability to \(w_1 \)
or to \(w_2 \) (i.e. whether \(P_L(w_1|u) > P_L(w_2|u) \) or vice versa) depends on the magnitude of
the difference between the two speaker probabilities \(P_S(u|w_1) \) and \(P_S(u|w_2) \). One way to
make a more precise assessment of these two speaker probabilities is to define a spe-
cific value for the free parameter \(\alpha \) in equations 22 and 23. To avoid making arbitrary
decisions on free parameter values, we conducted a production experiment to obtain an
empirical estimate of the speaker probabilities, described in the next section. As we also
show below, an additional advantage of collecting empirical production data is that it
helps us test an independent prediction made at the end of §3.5.

To summarize, in §3 we developed an analysis that incorporates the parsing biases into
the pragmatic reasoning process. In particular, applying the RSA model to the current
empirical case, we demonstrated that parsing biases could be integrated into the literal
listener’s inferences in a principled fashion, which were then ultimately integrated into
the pragmatic listener’s inferences via an intermediate level of speaker inferences. The
step-by-step demonstration in this section provides a detailed outline of the general pro-
posal. The proposal makes clear qualitative predictions about the pragmatic speaker’s
posterior probabilities for utterances containing positive predicates. The predictions for
utterances containing negative predicates are left open, since a precise prediction would
depend on a more specific estimate of the speaker inferences. In the next section, we de-
scribe a production experiment to empirically estimate the speaker inferences. The goal
of this production experiment was two-fold. First, with the empirically estimated speaker
probabilities, we can empirically derive the pragmatic listener’s posterior probabilities
using the Bayes rule in 8, and we are then able to evaluate whether the posterior proba-
bilities of a pragmatic listener correctly predict the truth-value judgment results obtained
from experiment 1. Second, the empirical production results also allow us to validate a
crucial prediction of the proposal: as a result of integrating parsing biases into the literal
4. The pragmatic listener’s inferences.

4.1. Experiment 4: estimating the production pattern.

Material, procedure, and participants. The goal of this experiment was to estimate how likely participants are to use the target WH-in-situ construction to describe a given world state. To this end, we first constructed scenarios corresponding to the four types of world states presented in Table 3. Next, we elicited productions that describe these world-state scenarios. In particular, we were interested in whether participants would produce utterances identical or very similar to the ambiguous WH-in-situ target sentences used in the truth-value judgment task in experiment 1, as in 7a and 7b. One methodological concern is that the target WH-in-situ construction is complex, and it is very unlikely that a free production task will trigger sufficient (or any) amount of target production. Previous production results from Xiang et al. (2015) showed that native Mandarin speakers avoid producing relatively long WH-in-situ dependencies as much as they can, even at the cost of producing some otherwise dispreferred complex clause structures (e.g. relative clauses). Given this constraint, instead of eliciting free production, we provided phrase fragments to guide and constrain the participants’ production process.

We constructed a total of sixteen item sets, with each item set containing four conditions, corresponding to the four relevant world states. The experimental trials had the following structure. Participants saw one of the four world-state scenarios on the screen. The phrasing of these scenarios was adapted and modified from the material used in experiment 3 (see the example in 14). Below the scenario on the same screen, participants saw four phrase fragments. The participants were instructed to form a sentence using these fragments (by typing out a sentence that included these fragments) that expresses a message consistent with the scenario presented to them.

The four fragments were presented in a 2 × 2 grid format, and the position of each fragment in the grid was randomized from trial to trial. For example, if a participant received a world-state scenario for a positive predicate, such as either of the two world states under 14a, they would receive the four fragments ‘Emily announced’, ‘which city’, ‘established’, and ‘her team discovered’. The same set of fragments was supplied to the participants for both the W1 and the W2 scenarios under the same positive predicate. If a participant received a relevant world-state scenario for a negative predicate, such as either of the two world states under 14b, they would receive a set of fragments almost identical to that above, except that the positive predicate ‘Emily announced’ was replaced by the negative predicate ‘Emily concealed’. The positions of these fragments in the 2 × 2 grid were randomized so that participants were not cued about the word order of the target sentence they were about to produce. An example trial is given in Figure 4.

During the practice trials participants were instructed that they could add other material they wanted to use, as long as they included the provided phrases in their production. Even though the task itself was not equivalent to spontaneous natural production, it nevertheless left participants enough flexibility to form various types of utterances. Therefore they were not forced to produce the target structure. The experimental materials were adapted from experiment 1 and experiment 3. The world-state scenarios were adapted from experiment 3 (e.g. ex. 14), and the phrase fragments were adapted from
the target sentences in experiment 1. The experiment was conducted on IbexFarm, and participants typed up and submitted each sentence they formed. A total of 248 native Mandarin speakers participated in our study. Each participant performed the task on sixteen experimental trials and an additional ten filler trials.

RESULTS. Three different native Mandarin speakers coded the production results. We removed the trials from participants who did not perform the task properly (about 1% of the total trials). For each trial, if the participant produced a wh-in-situ structure similar to the target sentence in the truth-value judgment task in experiment 1, it was coded as a target structure. Similarity was evaluated based on whether the four fragments provided to the participants were organized into the same word order and syntactic structure as the target sentences in experiment 1. All other structures they produced were coded as nontarget structures.

On average, about 40% of the total trials conformed to the wh-in-situ target structure, with word order similar to that of the target sentences used in experiment 1. In Figure 5, we present the proportion of producing the target structure, split by the world-state context and the predicate type. Importantly, the results presented here confirm the prediction made in §3.5: for both types of predicates, participants were more likely to produce the ambiguous target structure when describing the \(w_1 \) state than the \(w_2 \) state (positive predicate: \(w_1 48\%, w_2 31\% \); negative predicate: \(w_1 44\%, w_2 36\% \)), as confirmed by a significant main effect of world state (\(\text{est} = 0.32 \pm 0.05, z = 6.8, p < 0.00001 \)).

It is worth noting that the target wh-in-situ dependency structure was not frequently produced by the participants (about 40% on average). This is not surprising, given that the long wh-in-situ dependency is syntactically complex. Among the alternative structures participants produced, the most common strategy to reduce complexity was producing unambiguous conjoined clauses such as ‘Emily announced that her team discovered there was a city that was built by aliens, but she didn’t announce which city it was’ (艾米丽公布了她的团队发现有一个古城市是外星人建造的，但是她没有公布是哪座城市)’. The conjoined-clause structure is longer than the target structure, but the scope of the wh-phrase is not ambiguous. On a small number of trials participants also produced structures that, although still scope-ambiguous, contained shorter scope

11 The converged mixed-effects model is: model = glmer(response~VerbPolarity × worldstate + (1|subj) + (1 + worldstate|item), data = data, family = binomial). Both predictors are sum-coded.
dependencies, such as ‘Emily announced that her team discovered which city was built by aliens (爱丽丝公布了她的团队发现了哪座城市是外星人建造的。)’. Compared to the target structure, this example employs shorter scope dependencies due to the fact that the wh-phrase is in a clause-initial position rather than a clause-final position—both orders are grammatical in Mandarin. In addition, this structure had a different kind of information-structure packaging compared to the target structure.12

4.2. Empirically deriving the pragmatic listener’s inferences. We are ready to work out the pragmatic listener’s inferences, using the Bayes rule in 8, repeated in 27.

\[
P_L(w|u) = \frac{P_S(u|w) \times P(w)}{\sum_{w'} P_S(u|w') \times P(w')}
\]

We obtained the empirical estimates for the two terms \(P(w)\) and \(P_S(u|w)\) in experiment 3 and experiment 4. For convenience, we summarize the results from these two experiments in Table 5 and Table 6 for the positive and negative predicates separately, and then compute the pragmatic listener’s posterior probabilities in 28 and 29.

| WORLD STATES | \(P_S(u|w)\) | PRIORS |
|--------------|-------------|--------|
| w1: Emily announced that they discovered that a city was built by aliens, and she also announced the name of the city. (艾米丽公布了她们发现了有一个城市是外星人建造的，她也同时公布了这个城市的名字。) | 0.48 | 0.53 |
| w2: Emily announced that they discovered that a city was built by aliens, but she did not announce the name of the city. (艾米丽公布了她们发现了有一个城市是外星人建造的，但她没有公布这个城市的名字。) | 0.31 | 0.47 |

Table 5. For the positive predicate, see the example in 7a and 13a.
Target sentence: Emily announced her team discovered aliens established which city.
(艾米丽公布了她的团队发现了外星人建造了哪座城市。)

12 The English translation may look like passivization, but the actual Mandarin production often involves a focus marker shi to front the wh-phrase to the clause-initial position.
Upon hearing the target utterance, the pragmatic listener’s posterior probability is higher for \(w_1 \) (0.64) than for \(w_2 \) (0.36). Recall that in the truth-value judgment task (experiment 1, example 7), the context presented to the participants was the following: ‘At a recent archaeology conference, Emily said that her research team found evidence to prove that a famous ancient city was actually built by aliens. But she kept the name of the city a secret.’ Because state \(w_1 \) contradicts what the context scenario describes, a higher posterior probability for \(w_1 \) predicts that participants should have been more likely to answer ‘does not match/false’ when they were asked in experiment 1 whether the target sentence fit the given context. Indeed, participants gave more ‘false’ responses when they were presented with 7a in experiment 1: the predicted posterior probability for \(w_1 \) was 0.64, and the mean proportion of responding ‘false’ for 7a in experiment 1 was 0.73.

For utterances containing a negative predicate, such as 7b, the calculation process is very similar, as shown in Table 6 and 29.

World States

<table>
<thead>
<tr>
<th>(w_1): Emily concealed the fact that they discovered that a city was built by aliens, and she also concealed the name of the city. (艾米丽隐瞒了她们发现了有一个城市是外星人建造的，她也同时隐瞒了这个城市的名字。)</th>
<th>(w_2): Emily did not conceal the fact that they discovered that a city was built by aliens, but she concealed the name of the city. (艾米丽没有隐瞒她们发现了有一个城市是外星人建造的，但是她隐瞒了这个城市的名字。)</th>
</tr>
</thead>
</table>
| | \(P_3(u|w) \) \begin{align*} 0.44 & \\
| & \text{Prior} 0.42 \end{align*} |

Table 6. For the negative predicate, see the example in 7b and 13b.

Target sentence: Emily concealed her team discovered aliens established which city. (艾米丽隐瞒了她的团队发现了外星人建造了哪座城市。)

\[
(29) \quad P_L(w_1|u_{\text{negative}}) = \frac{P_3(u|w_1) \times P_L(w_1)}{\sum_{w'} P_3(u|w') \times P_L(w')} = \frac{0.44 \times 0.42}{0.44 \times 0.42 + 0.36 \times 0.58} = 0.47
\]

\[
P_L(w_2|u_{\text{negative}}) = \frac{P_3(u|w_2) \times P_L(w_2)}{\sum_{w'} P_3(u|w') \times P_L(w')} = \frac{0.36 \times 0.58}{0.44 \times 0.42 + 0.36 \times 0.58} = 0.53
\]

Upon hearing the target utterance 7b, the pragmatic listener’s posterior probability is lower for \(w_1 \) (0.47) than for \(w_2 \) (0.53). Because the \(w_2 \) state is consistent with the con-
text scenario provided in the truth-value judgment task, a higher posterior probability for w_2 predicts that participants should be more likely to answer ‘matches/true’ in experiment 1. This again correctly derives the results in experiment 1: participants had a higher proportion of ‘true’ responses when they were presented with 7b. There is a potential discrepancy though. The posterior probability for w_2 is 0.53. This predicts a moderate preference for the ‘true’ response to 7b in experiment 1, but the actual mean proportion of ‘true’ responses for 7b was 0.73. This mismatch may stem from additional factors that influence truth-value judgments. We discuss one possible source of influence—from questions under discussion—in the general discussion (§5).

To summarize, in §4 we showed that the empirical production results quite closely match the model-predicted production patterns in §3.5. Furthermore, the empirically derived pragmatic listeners’ inferences, calculated using the empirical production and prior data, also match reasonably well the overall patterns of the empirical truth-value judgment results obtained in experiment 1. Both findings further corroborate the general proposal laid out in §3.

5. General discussion. There are two major findings in this article. The first is an empirical one. Specifically, experiments 1 and 2 identified an interesting paradox. For a scope-ambiguous wh-in-situ construction in Mandarin, the parser prefers the local scope over many other types of long-distance dependencies. The interpretive bias, however, points in the opposite direction: the interpretation compatible with the high-scope dependency is the dominant interpretation. The pursuit of an explanation for this paradox led to the second main finding of this article: a Bayesian pragmatic model, built upon the rational speech act framework (Frank & Goodman 2012, Goodman & Frank 2016), can provide a principled (at least partial) explanation of the interpretation bias, while also incorporating the parsing bias into the same model. In this section, we discuss the general implications of the current proposal and also some limitations.

5.1. Bridging the gap between parsing and interpretation. The experimental findings in the current study contribute new empirical evidence to the observation that misalignments between parsing and interpretation are possible. As mentioned in the introduction (§1), similar misalignments have been found in previous work showing that comprehenders can derive interpretations incompatible with the grammatically licensed parse. Almost all existing approaches to addressing this issue focus on rethinking how parsing works. The ‘good-enough’ model (Christianson et al. 2001, Ferreira & Patson 2007) proposes that the parsing outcome may not be a single complete parse, and that interpretations can be derived through heuristics instead of a fully specified parse. Some evidence, however, suggests that comprehenders do not necessarily underspecify syntactic structures even when they misinterpret a sentence (Slattery et al. 2013). The noisy-channel account (Levy 2008b, Gibson et al. 2013) hypothesizes that there is uncertainty in the linguistic input a comprehender perceives, which introduces distorted alternatives as potential candidates for parsing. The self-organizing model (Tabor & Hutchins 2004) allows a set of lexically anchored tree fragments to form a network via spreading activation, making it possible for locally coherent but globally ungrammatical parses to survive, which in turn explains why people sometimes accept interpretations that are not supported by the global parse (Konieczny et al. 2009).

The approach we put forward in this article departs from these previous approaches by rethinking instead the mapping between parsing outcome and interpretation. Our proposal is grounded in the idea that a comprehender’s task is not only to structurally represent the heard utterance, but also (or even more importantly) to infer a message or
the communicative intent from the utterance. We maintain the basic parsing assumption that the original linguistic input is fully parsed into grammatical structures, but we introduce pragmatic reasoning to operate on the parsing outcome in order to derive the ultimate interpretation.\(^{13}\)

The current proposal adopts the RSA framework. The original RSA model, which focused primarily on accounting for pragmatic phenomena such as scalar implicatures, deals with syntactically simple and unambiguous utterances (see e.g. a review in Goodman & Frank 2016). In the current study, we extend the original model to syntactically complex domains. We assume a parallel parser that maintains multiple possible parses of a sentence, with parsing biases represented as a probability distribution over all of the possible parses. But there is no simple correspondence between parsing biases and the interpretations obtained by a listener. A listener’s linguistic update is determined by the interaction between parsing biases and a number of other factors.

To start with, in order to incorporate parsing biases into the pragmatic reasoning process, we combine the effect of different parses based on the probability of each parse when calculating the linguistic update at the literal listener stage. As shown by the examples in 15, 17, and 19, three factors work together to determine a literal listener’s linguistic update: parsing biases, the prior probabilities of the relevant world states, and the compatibility between a world state and a particular parse of the utterance. This means that parsing decisions alone do not necessarily determine a literal listener’s linguistic update. While one parse may be compatible with only one relevant world state, another parse may be compatible with more than one world state. Different world states also have different prior probabilities. Due to the interaction between these different factors, even when the parser strongly favors a particular parse, it is still possible that the interpretation (or the world state) supported by that parse does not become the dominant one for the literal listener. Conversely, a world state compatible with a dispreferred parse still has the chance to become a strong candidate in the posterior beliefs of a literal listener.

This is a key feature of the current proposal. It affords a more flexible mapping between parsing and interpretation in a principled manner, allowing potential misalignment between parsing preferences and interpretive preferences from the very beginning of the recursive pragmatic reasoning process. The effect of the parsing bias, which enters the pragmatic reasoning process at the literal listener stage, will eventually percolate up and have an influence on the linguistic update of the pragmatic listener, mediated by the intermediate pragmatic speaker. In addition, the linguistic update of the pragmatic listener is also affected by the prior probability of each relevant world state (see the calculations in 28 and 29). Taking everything together, the parsing bias does not directly determine interpretation; instead, it becomes part of the overall pragmatic reasoning process that gives rise to the ultimate interpretation. Once we remove the premise that there is a direct mapping between parsing outcome and interpretation, the seeming paradox we observed earlier between parsing and interpretation in effect disappears.

In addition to accounting for the seeming paradox presented in the current case study—that is, that the interpretation supported by the dominant parse is not chosen as
the dominant interpretation—the current proposal also predicts that an interpretation supported by a high prior probability will also not necessarily be the winning candidate. Again this is because the Bayesian update of a pragmatic listener is conditioned by a number of factors together, as discussed above, rather than by any single factor alone. This prediction is in line with some examples raised by a referee, such as The workers painted the doors with cracks or The girl sliced the apple with a blemish. In these examples, the implausible interpretations (e.g. cracks or blemish interpreted as an instrument argument) are more dominant even though the world states they represent should have very low prior probabilities. Based on the current proposal, we speculate that these examples are likely to have a strong parsing bias that attaches the prepositional phrase as a verbal adjunct, and when the parsing bias and the speaker’s production probability are taken into account, the pragmatic listener’s posterior probability will turn out to favor the world state that has very low priors.

Since the current case study involves structural ambiguity (i.e. the high vs. low scope of the in-situ wh-phrase), it is worth noting that in the syntactic ambiguity-resolution literature, there has been an influential debate about how syntactic information and other sources of information should be integrated. The central empirical domain of this body of work largely focuses on garden-path ambiguity resolution. Consider the following garden-path ambiguity example. The partial sentence The witness examined ... could be interpreted as denoting either a subject-predicate relation or a subject-modification relation (with a reduced relative clause) depending on whether the verb examined is parsed as a matrix verb or as a past participle. These two parses could receive differential support from syntactic, lexical, and contextual/pragmatic information. For instance, on the one hand, parsing examined as a matrix verb may be the temporarily preferred parse since it is structurally less complex than the alternative parse postulating a reduced relative clause, but on the other hand, the relative clause parse could be a pragmatically more felicitous interpretation depending on the context. The competition and trade-off between different sources of information also create a kind of ‘misalignment’—in this case, the parse favored for structural-complexity reasons could be in conflict with the parse supported by pragmatic context. When broadly construed, the question of how to resolve this sort of conflict can also be viewed as addressing a problem related to the current study. But we note that the theoretical focus is not the same.

The large body of work on garden-path ambiguity resolution aims at understanding how the parser combines multiple sources of information to guide its parsing decision. The various answers to the question range from proposals that prioritize structural principles to guide the initial parsing decision, while consulting other sources of information in the later structural-reanalysis process (e.g. Frazier 1978, Frazier & Fodor 1978), to proposals that view parsing as a constraint-satisfaction process that integrates all sources of relevant information as quickly as possible to arrive at the correct parse (MacDonald et al. 1994, Trueswell et al. 1994, McRae et al. 1998). The current case study, although involving structural ambiguity, is not concerned with how people consult different sources of information to choose between a high-scope and a low-scope parse. Instead, the empirical puzzle is that even after establishing the fact that people have settled on the low-scope parse as the preferred parse at the global level, the interpretation compatible with the low-scope parse is still not perceived as the preferred interpretation of the utterance. It is this kind of misalignment between the parsing outcome and the ultimate interpretation at the global level that we aim to account for.

One may ask if it is possible that the initially preferred low-scope parse was somehow reanalyzed into a high-scope parse in the truth-value judgment experiment. Reanalysis is
possible for classic garden-path sentences due to the presence of clear error signals and disambiguating cues. But we are not aware of any systematic cues in our experiment that would trigger a reanalysis of the scope dependency. With that said, although our theoretical goal is not entirely identical with the syntactic ambiguity-resolution literature on garden-path sentences, future work should still explore whether the current proposal could be extended to shed new light on a broader range of phenomena regarding parsing and interpretation, including the garden-path ambiguity resolution problem. The proposal we outlined here integrates parsing and pragmatic reasoning only at the global utterance level. If the general approach could be extended to incrementally integrate parsing and pragmatic reasoning for partial utterances (see Cohn-Gordon et al. 2019 for a proposal of an incremental RSA model), this may provide a new way to model a number of classic problems of incremental comprehension. For example, as pointed out by a referee, when integrating syntactic and (nonsyntactic) contextual information to resolve temporary garden-path ambiguity, the most common method in the literature is to implement a probabilistic cue-weighting strategy (e.g. McRae et al. 1998, Narayanan & Jurafsky 1998): that is, different sources of information are combined by a weighting parameter that determines how strong of an effect each type of information has on the ultimate parsing choice and interpretation. Determining the value of the weighting parameter in a principled manner, however, could be theoretically challenging. In the current proposal, integrating parsing and pragmatic reasoning does not evoke cue weighting. Instead, parsing biases are fully embedded within the Bayesian pragmatic reasoning process. This feature is potentially theoretically appealing, and it could open up new possibilities to account for incremental comprehension.

5.2. The potential role of QUDs. Although the Bayesian pragmatic model provided good qualitative predictions for the interpretation bias, as we noted earlier, it did not completely capture the behavioral results from the truth-value judgment task. The mismatch was more salient when the utterance contained a negative matrix predicate—for an utterance like 7b, the model predicted only a moderate bias for the ‘true’ response (53% posterior probability for the \(w_2\) state that will lead to a ‘true’ response (see 29)), whereas the empirical results in experiment 1 showed a more substantial bias for the ‘true’ response (73%). This discrepancy suggests that the current analysis needs further refinement. We speculate here that making the analysis more sensitive to the relevant questions under discussion (QUDs; Ginzburg 1996, Roberts 1996) could potentially lead to improvement. A structured discourse can be perceived as being organized around a set of issues or questions that the interlocutors are committed to resolving together. Each sentence coheres with the previous discourse context by virtue of helping to address the currently shared (often implicit) QUD at that given moment in time, for instance, by providing an answer to it or by raising another relevant question. A comprehender could approach a given utterance as an answer to a discourse-salient QUD, and their pragmatic inference should be conditioned by this currently relevant QUD. A number of previous studies have explored how to incorporate QUDs into the RSA models (Degen & Goodman 2014, Scontras & Goodman 2017, Savinelli et al. 2018). One empirical challenge with this approach is that there is no currently known rigorous method to systematically track (implicit) QUDs in a discourse context.\(^{14}\) With
With the truth-value judgment task, recall that in our working example 7, the context scenario ended with a note that Emily kept secret the name of the city in her team’s discovery. This last sentence may have made the naming event highly salient for at least some participants. These participants could be motivated to construct an implicit QUD like ‘Did Emily announce the name of the city?’ When they then received a target sentence and were asked to judge whether the target sentence fits the context scenario, they may have based their ‘true/false’ judgments largely on how the target sentence answers this QUD and whether that answer is congruent with the context. In 28 and 29 we computed the participants’ posterior probabilities of different world states after receiving a positive or negative target utterance. It is crucial to note that for an utterance containing a positive predicate, the two relevant world states in Table 5 would provide different answers to the implicit QUD ‘Did Emily announce the name of the city?’. The w_1 state will trigger the answer ‘Yes, she did’, which contradicts how the QUD was actually resolved in the context scenario, and therefore a comprehender that endorses w_1 would judge the target sentence to ‘not match’ or be ‘false’ under the given context. The w_2 state, by contrast, will trigger the answer ‘No, she didn’t’ to the implicit QUD, consistent with how the QUD was resolved in the context scenario, leading to a truth-value judgment of ‘matches’ or ‘true’. We predict that the true/false responses in experiment 1 should track the posterior probabilities of the w_1/w_2 states, which by and large was indeed the case. But the situation for target utterances containing a negative predicate is a little different. The two relevant world states in Table 6 would both trigger the same answer ‘No, she didn’t’ to the implicit QUD, regardless of the listener’s posterior preferences for these two world states. This would mean that a participant should always conclude that the target sentence answered the QUD in a way consistent with how the QUD was resolved in the context. Therefore the target sentence has a very high probability of being judged as ‘matches’ or ‘true’ under the context. This could explain why in experiment 1, the proportion of ‘true’ responses for a sentence containing a negative predicate is much higher than the model-predicted posterior probability for the w_2 state in 29.

Under the scenario outlined above, the basic belief-update process remains the same as in our original proposal, and participants’ sensitivity to QUDs has an effect only at the last step of completing the truth-value judgment task: rather than directly evaluating whether each updated world state is consistent with the context scenario, participants instead evaluate whether each updated world state answers the discourse-salient QUD in a way consistent with how the QUD was resolved in the context. Alternatively, it is also possible that QUDs could make contributions at a much earlier stage. For instance, primed by the implicit QUD ‘Did Emily announce the name of the city?’ participants may decide to prioritize the parse that could clearly answer this QUD. Since only the high-scope parse clearly specifies (the low-scope parse underspecifies) whether the naming event happened, participants may be led to favor the high-scope parse and give their truth-value judgments based on it. In this way, QUDs play a role in actually shaping participants’ early parsing decisions. The hypothesis that QUDs can have an effect on early parsing decisions finds independent support from some previous evidence (e.g. Clifton & Frazier 2012), but the acceptability results from experiment 2 present a potential challenge for this hypothesis. Experiment 2 shares identical context scenarios and target sentences with experiment 1. If contextually triggered implicit QUDs can guide participants to more readily settle on a high-scope parse, this may incorrectly predict that participants could have overcome the locality bias in experiment 2 and given
higher acceptability ratings for sentences that have only a high-scope parse (i.e. the un-
ambiguous conditions).

Lastly, our discussion about QUDs so far still assumes an idealized listener who can
build complete parses and integrate the parsing outcome with the pragmatic reasoning
process. There is yet another possibility. With complex sentences like the ones tested
here, participants may develop strategies to answer the implicit QUD ‘Did Emily an-
nounce the name of the city?’ without fully parsing the target sentence. For example,
they may have simply remembered the beginning of the target sentence, ‘Emily an-
nounced’ or ‘Emily concealed’, and used those sentence fragments to answer the QUD,
and then derived the truth-value judgments by comparing whether the target sentences
answered the QUD in the same way that the QUD was resolved under the context sce-
nario in the experiment. We cannot rule out this possibility. But we note that although
this possibility may seem simpler than what we outlined above, the simplicity comes
with a theoretical disadvantage. Since this ‘partial-sentence’ heuristic only narrowly
targets the truth-value judgment task, it would be completely silent on how to account
for the production preferences observed in experiment 4, and an account of the latter
has to be separately stipulated. The proposal we developed offers a more principled way
to cover a broader range of empirical findings.

5.3. Analysis at the individual item level. The analysis we presented in §4.2
was based on data aggregated over participants and items. It is worth asking whether
the pragmatic model we used to explain the truth-value judgments at the population
level can also explain individual behavior. Unfortunately, as the truth-value judgments,
the prior estimates, and the production-bias estimates in the current study were col-
lected from different groups of participants, we are not able to construct a pragmatic
model for each participant. But as a proof of concept, we nonetheless carried out a by-
item analysis and examined whether the Bayesian pragmatic reasoning introduced in
this section could explain, at least to some extent, the truth-value judgments obtained
for each item.

Recall that in the current study we constructed sixteen sets of scenarios/items like the
ones presented in example 7. The same set of materials, modified for the specific goals
of different experiments, was used to collect truth-value judgments, prior estimates, and
production-bias estimates. We therefore could do the calculation in 28 and 29 for each
item separately and then correlate, at the individual item level, the posterior probability
obtained for a world state and the truth-value response consistent with that world state.
Due to an experiment error, one item used to estimate the production bias in experiment
4 had a slightly different predicate from the same item used in the other experiments.
We excluded this item from the by-item correlation analysis. The correlation results ob-
tained from fifteen items are plotted in Figure 6.

For each target sentence with a positive predicate (Fig. 6, left), we correlated the pro-
portion of ‘false’ (e.g. ‘does not match’) responses with the posterior probabilities of
the w_1 state. The y-axis in the figure represents the proportion of the ‘false’ responses
for each item. ‘False’ is the majority response obtained for the positive predicates in ex-
periment 1. Since in experiment 1 the w_1 state supports the ‘false’ judgment for a posi-
tive predicate, the x-axis in the figure represents the posterior probability of the w_1
state. The calculation of the posterior probability is identical to the calculation of

15 Correlating the minority responses from experiment 1 did not make a difference—for example, correlat-
ing the ‘true’ responses with the posterior probabilities of the w_2 states for the positive predicates.
PL(w1|upositive) in 28, except that it is now done for each individual item. Similarly, for each target sentence with a negative predicate (Fig. 6, right), we correlated the proportion of the ‘true’ (e.g. ‘matches’) responses to the posterior probability of the w2 state. ‘True’ is the majority response obtained for the negative predicates in experiment 1, and the w2 state is the world state that supports the ‘true’ judgment. A significant correlation would indicate that, at the individual item level, the posterior probabilities of the relevant world states derived by the pragmatic model are indeed related to the experimentally estimated truth-value judgments. But as shown in Fig. 6, there are no significant correlations (ps > 0.3).

One possible source for the lack of correlation in the by-item analysis is the estimated prior probabilities for each world state. The scenarios we constructed for the current study are all somewhat arbitrary; at the individual scenario level, the prior probability estimate for each world state may have been too noisy. We did an exploratory analysis that removed the effect of the prior from the calculation. This amounts to assuming an equal prior probability for the two alternative world states at the individual scenario level, with \(P(w_1) = P(w_2) = 0.5 \). The by-item correlation under this new analysis is presented in Figure 7. For the positive predicate, the y-axis still represents the truth-value judgments consistent with the world state w1 (i.e. the proportion of ‘false’ judgments); the x-axis, instead of representing the posterior probability of w1, represents how likely a speaker is to choose the target wh-in-situ structure to describe w1, given that the speaker could use the target structure to describe either w1 or w2.16 For the negative predicate in Fig. 7, the y-axis represents the truth-value judgments consistent with the world state w2 (i.e. the proportion of ‘true’ judgments), and the x-axis represents how likely a speaker is to choose the target wh-in-situ structure to describe w2.

The by-item correlation is marginal for the positive predicate items (\(p < 0.06 \)) and significant for the negative predicate items (\(p < 0.05 \)). This exploratory analysis provides some very preliminary evidence that at the individual item level, a listener’s truth-value judgment is correlated with the production choice of the speaker. Overall, however, we can draw no strong conclusion at the individual item level. More future work is needed to address questions about individual variation.

16 One could see this more clearly based on the calculation of \(P_L(w_1|u_{\text{positive}}) \) in 28. When \(P(w_1) \) and \(P(w_2) \) are set to be 0.5 in this equation, the right-hand side of the equation is essentially equivalent to \(\frac{P(u_1|w_1)P(w_1)}{P(u_1|w_1)P(w_1) + P(u_1|w_2)P(w_2)} \), and this is what the x-axis in Fig. 7 (left) represents. Similarly, for the plot on the right in Fig. 7, the x-axis represents \(\frac{P(u_1|w_2)P(w_1)}{P(u_1|w_1)P(w_1) + P(u_1|w_2)P(w_2)} \).
6. Conclusion. To conclude, focusing on wh-in-situ scope ambiguity in Mandarin Chinese, our study provides novel empirical evidence to show that parsing and interpretation decisions at the global level can misalign. We develop an analysis that incorporates parsing decisions into a general Bayesian pragmatic reasoning architecture, circumventing any actual conflict between parsing and interpretation. Our study therefore brings closer two strands of research in psycholinguistics, one on structure parsing, and the other on pragmatic reasoning.

REFERENCES

Drummond, Alex. 2016. IbexFarm. Online: https://github.com/addrummond/ibex.

Xiang, Ming; SuiPing Wang; and YanLing Cui. 2015. Constructing covert dependencies—The case of Mandarin wh-in-situ dependency. *Journal of Memory and Language* 84:139–66. DOI: 10.1016/j.jml.2015.05.006.
Xiang
Department of Linguistics
The University of Chicago
Chicago, IL 60637
[mxiang@uchicago.edu]

Dai
Department of Mathematics and Computer Science
Alma College
Alma, MI 48801
[dai@alma.edu]

Wang
Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents
South China Normal University
Guangzhou, China
[wangsuiping@m.scnu.edu.cn]

[Received 25 September 2019;
revision invited 19 April 2020;
revision received 2 November 2020;
revision invited 18 July 2021;
revision received 5 November 2021;
accepted pending revisions 27 May 2022;
revision received 27 June 2022;
accepted 5 July 2022]